Predicting challenge moments from students' discourse: A comparison of
GPT-4 to two traditional natural language processing approaches
- URL: http://arxiv.org/abs/2401.01692v1
- Date: Wed, 3 Jan 2024 11:54:30 GMT
- Title: Predicting challenge moments from students' discourse: A comparison of
GPT-4 to two traditional natural language processing approaches
- Authors: Wannapon Suraworachet, Jennifer Seon, Mutlu Cukurova
- Abstract summary: This study investigates the potential of leveraging three distinct natural language processing models.
An expert knowledge rule-based model, a supervised machine learning (ML) model and a Large Language model (LLM) were investigated.
The results show that the supervised ML and the LLM approaches performed considerably well in both tasks.
- Score: 0.3826704341650507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective collaboration requires groups to strategically regulate themselves
to overcome challenges. Research has shown that groups may fail to regulate due
to differences in members' perceptions of challenges which may benefit from
external support. In this study, we investigated the potential of leveraging
three distinct natural language processing models: an expert knowledge
rule-based model, a supervised machine learning (ML) model and a Large Language
model (LLM), in challenge detection and challenge dimension identification
(cognitive, metacognitive, emotional and technical/other challenges) from
student discourse, was investigated. The results show that the supervised ML
and the LLM approaches performed considerably well in both tasks, in contrast
to the rule-based approach, whose efficacy heavily relies on the engineered
features by experts. The paper provides an extensive discussion of the three
approaches' performance for automated detection and support of students'
challenge moments in collaborative learning activities. It argues that,
although LLMs provide many advantages, they are unlikely to be the panacea to
issues of the detection and feedback provision of socially shared regulation of
learning due to their lack of reliability, as well as issues of validity
evaluation, privacy and confabulation. We conclude the paper with a discussion
on additional considerations, including model transparency to explore feasible
and meaningful analytical feedback for students and educators using LLMs.
Related papers
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
This paper aims to evaluate the reasoning capacities of large language models (LLMs) in solving recent programming problems in Codeforces.
We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered.
Surprisingly, theThoughtived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems.
arXiv Detail & Related papers (2023-12-04T18:58:57Z) - Investigating the Efficacy of Large Language Models in Reflective
Assessment Methods through Chain of Thoughts Prompting [0.2552922646705803]
Chain of Thought(CoT) prompting method has been proposed as a means to enhance LLMs' proficiency in complex reasoning tasks.
The primary aim of this research is to assess how well four language models can grade reflective essays of third-year medical students.
arXiv Detail & Related papers (2023-09-30T06:25:27Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
Large language models (LLMs) have recently demonstrated significant potential in mathematical abilities.
LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities.
This paper presents a novel method for integrating LLMs into the abductive learning framework.
arXiv Detail & Related papers (2023-04-21T16:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.