Perspective Transition of Large Language Models for Solving Subjective Tasks
- URL: http://arxiv.org/abs/2501.09265v1
- Date: Thu, 16 Jan 2025 03:30:47 GMT
- Title: Perspective Transition of Large Language Models for Solving Subjective Tasks
- Authors: Xiaolong Wang, Yuanchi Zhang, Ziyue Wang, Yuzhuang Xu, Fuwen Luo, Yile Wang, Peng Li, Yang Liu,
- Abstract summary: Reasoning through Perspective Transition (RPT) is a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives.
Our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting.
- Score: 18.322631948136973
- License:
- Abstract: Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.
Related papers
- Do LLMs Understand Ambiguity in Text? A Case Study in Open-world Question Answering [15.342415325821063]
Ambiguity in natural language poses significant challenges to Large Language Models (LLMs) used for open-domain question answering.
We compare off-the-shelf and few-shot LLM performance, focusing on measuring the impact of explicit disambiguation strategies.
We demonstrate how simple, training-free, token-level disambiguation methods may be effectively used to improve LLM performance for ambiguous question answering tasks.
arXiv Detail & Related papers (2024-11-19T10:27:26Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Predicting challenge moments from students' discourse: A comparison of
GPT-4 to two traditional natural language processing approaches [0.3826704341650507]
This study investigates the potential of leveraging three distinct natural language processing models.
An expert knowledge rule-based model, a supervised machine learning (ML) model and a Large Language model (LLM) were investigated.
The results show that the supervised ML and the LLM approaches performed considerably well in both tasks.
arXiv Detail & Related papers (2024-01-03T11:54:30Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z) - Introspective Tips: Large Language Model for In-Context Decision Making [48.96711664648164]
We employ Introspective Tips" to facilitate large language models (LLMs) in self-optimizing their decision-making.
Our method enhances the agent's performance in both few-shot and zero-shot learning situations.
Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
arXiv Detail & Related papers (2023-05-19T11:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.