Fast & Fair: Efficient Second-Order Robust Optimization for Fairness in
Machine Learning
- URL: http://arxiv.org/abs/2401.02012v1
- Date: Thu, 4 Jan 2024 01:02:55 GMT
- Title: Fast & Fair: Efficient Second-Order Robust Optimization for Fairness in
Machine Learning
- Authors: Allen Minch, Hung Anh Vu, Anne Marie Warren
- Abstract summary: This project explores adversarial training techniques to develop fairer Deep Neural Networks (DNNs)
DNNs are susceptible to inheriting bias with respect to sensitive attributes such as race and gender, which can lead to life-altering outcomes.
We propose a robust optimization problem, which we demonstrate can improve fairness in several datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This project explores adversarial training techniques to develop fairer Deep
Neural Networks (DNNs) to mitigate the inherent bias they are known to exhibit.
DNNs are susceptible to inheriting bias with respect to sensitive attributes
such as race and gender, which can lead to life-altering outcomes (e.g.,
demographic bias in facial recognition software used to arrest a suspect). We
propose a robust optimization problem, which we demonstrate can improve
fairness in several datasets, both synthetic and real-world, using an affine
linear model. Leveraging second order information, we are able to find a
solution to our optimization problem more efficiently than a purely first order
method.
Related papers
- NeuFair: Neural Network Fairness Repair with Dropout [19.49034966552718]
This paper investigates neuron dropout as a post-processing bias mitigation for deep neural networks (DNNs)
We show that our design of randomized algorithms is effective and efficient in improving fairness (up to 69%) with minimal or no model performance degradation.
arXiv Detail & Related papers (2024-07-05T05:45:34Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Sample Selection for Fair and Robust Training [28.94276265328868]
We propose a sample selection-based algorithm for fair and robust training.
We show that our algorithm obtains fairness and robustness better than or comparable to the state-of-the-art technique.
arXiv Detail & Related papers (2021-10-27T07:17:29Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
We propose a novel uncertainty-based method tailored to shape optimization.
It enables effective BO and increases the quality of the resulting shapes beyond that of state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-28T11:01:42Z) - A Bop and Beyond: A Second Order Optimizer for Binarized Neural Networks [0.0]
optimization of Binary Neural Networks (BNNs) relies on approximating the real-valued weights with their binarized representations.
In this paper, we take an approach parallel to Adam which also uses the second raw moment estimate to normalize the first raw moment before doing the comparison with the threshold.
We present two versions of the proposed: a biased one and a bias-corrected one, each with its own applications.
arXiv Detail & Related papers (2021-04-11T22:20:09Z) - Neural Non-Rigid Tracking [26.41847163649205]
We introduce a novel, end-to-end learnable, differentiable non-rigid tracker.
We employ a convolutional neural network to predict dense correspondences and their confidences.
Compared to state-of-the-art approaches, our algorithm shows improved reconstruction performance.
arXiv Detail & Related papers (2020-06-23T18:00:39Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.