Travelers: A scalable fair ordering BFT system
- URL: http://arxiv.org/abs/2401.02030v1
- Date: Thu, 4 Jan 2024 02:14:18 GMT
- Title: Travelers: A scalable fair ordering BFT system
- Authors: Bowen Xue, Sreeram Kannan,
- Abstract summary: Most efficient BFT consensus requires $O(nTL + n2T)$ communication complexity.
We propose a new system of BFT fair ordering protocols, Travelers, that substantially reduce the communication complexity.
- Score: 7.891481513306302
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Many blockchain platform are subject to maximal value extraction (MEV), and users on the platform are losing money while sending transactions because the transaction order can be manipulated to extract value from them. Consensus protocols have been augmented with different notion of fair ordering in order to counter the problem. Out of all practical protocols, the most efficient BFT consensus requires $O(nTL + n^2T)$ communication complexity, where $n$ is number node, $T$ is number of transactions and $L$ is average transaction size. In this work, we propose a new system of BFT fair ordering protocols, Travelers, that substantially reduce the communication complexity. The proposed system of protocols satisfy a new notion of fair ordering, called probabilistic fair ordering, which is an extension to some existing notions of fairness. The new notion allows a small probability of error $\epsilon$, that adversary can insert some transactions at any location in a block, but for the remaining $1-\epsilon$ the a modified version of ordering linearizability holds. Our mechanism neither require a dissemination network nor direct submissions to all consensus nodes. The key innovation comes from a routing protocol, that is both flexible and efficient. We construct a protocol with $O(c\log({n})TL + n^2)$ communication complexity with $\epsilon = 1/n^c$ for some system parameter $c\ge 1$.
Related papers
- OciorABA: Improved Error-Free Asynchronous Byzantine Agreement via Partial Vector Agreement [15.464948077412021]
We propose an error-free, information-theoretically secure multi-valued asynchronous Byzantine agreement protocol, called OciorABA.
In our protocol design, we introduce a new primitive: asynchronous partial vector agreement (APVA)
arXiv Detail & Related papers (2025-01-20T23:36:11Z) - OciorCOOL: Faster Byzantine Agreement and Reliable Broadcast [15.464948077412021]
COOL (Chen'21) is an error-free and deterministic Byzantine agreement protocol.
OciorCOOL can be optimized by reducing one communication round.
Building on Ocior, we design an optimal reliable broadcast protocol that requires only six communication rounds.
arXiv Detail & Related papers (2024-09-09T19:02:45Z) - Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages [63.366380571397]
We study the problem of private vector mean estimation in the shuffle model of privacy where $n$ users each have a unit vector $v(i) inmathbbRd$.
We propose a new multi-message protocol that achieves the optimal error using $tildemathcalOleft(min(nvarepsilon2,d)right)$ messages per user.
arXiv Detail & Related papers (2024-04-16T00:56:36Z) - Towards a Theory of Maximal Extractable Value II: Uncertainty [4.07926531936425]
Maximal Extractable Value (MEV) is value extractable by temporary monopoly power commonly found in decentralized systems.
This extraction stems from a lack of user privacy upon transaction submission and the ability of a monopolist validator to reorder, add, and/or censor transactions.
We show that neither fair ordering techniques nor economic mechanisms can individually mitigate MEV for arbitrary payoff functions.
arXiv Detail & Related papers (2023-09-25T15:01:11Z) - Cooperative Multi-Agent Reinforcement Learning: Asynchronous
Communication and Linear Function Approximation [77.09836892653176]
We study multi-agent reinforcement learning in the setting of episodic Markov decision processes.
We propose a provably efficient algorithm based on value that enable asynchronous communication.
We show that a minimal $Omega(dM)$ communication complexity is required to improve the performance through collaboration.
arXiv Detail & Related papers (2023-05-10T20:29:29Z) - Fair Ordering in Replicated Systems via Streaming Social Choice [2.480023305418]
Prior work studies the question of fairly'' ordering transactions in a replicated state machine.
We argue that this problem is best viewed through the lens of social choice theory.
arXiv Detail & Related papers (2023-04-05T20:20:15Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Non-local computation of quantum circuits with small light cones [0.0]
Port-based teleportation costs much less entanglement when done only on a small number of qubits at a time.
We give an explicit class of unitaries for which our protocol's entanglement cost scales better than any known protocol.
arXiv Detail & Related papers (2022-03-18T18:00:06Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
We show that the MARINA method of Gorbunov et al (2021) can be considered as a state-of-the-art method in terms of theoretical communication complexity.
Theory of MARINA to support the theory of potentially em correlated compressors, extends to the method beyond the classical independent compressors setting.
arXiv Detail & Related papers (2021-10-07T09:38:15Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.