U-Trustworthy Models.Reliability, Competence, and Confidence in
Decision-Making
- URL: http://arxiv.org/abs/2401.02062v1
- Date: Thu, 4 Jan 2024 04:58:02 GMT
- Title: U-Trustworthy Models.Reliability, Competence, and Confidence in
Decision-Making
- Authors: Ritwik Vashistha, Arya Farahi
- Abstract summary: We present a precise mathematical definition of trustworthiness, termed $mathcalU$-trustworthiness.
Within the context of $mathcalU$-trustworthiness, we prove that properly-ranked models are inherently $mathcalU$-trustworthy.
We advocate for the adoption of the AUC metric as the preferred measure of trustworthiness.
- Score: 0.21756081703275998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With growing concerns regarding bias and discrimination in predictive models,
the AI community has increasingly focused on assessing AI system
trustworthiness. Conventionally, trustworthy AI literature relies on the
probabilistic framework and calibration as prerequisites for trustworthiness.
In this work, we depart from this viewpoint by proposing a novel trust
framework inspired by the philosophy literature on trust. We present a precise
mathematical definition of trustworthiness, termed
$\mathcal{U}$-trustworthiness, specifically tailored for a subset of tasks
aimed at maximizing a utility function. We argue that a model's
$\mathcal{U}$-trustworthiness is contingent upon its ability to maximize Bayes
utility within this task subset. Our first set of results challenges the
probabilistic framework by demonstrating its potential to favor less
trustworthy models and introduce the risk of misleading trustworthiness
assessments. Within the context of $\mathcal{U}$-trustworthiness, we prove that
properly-ranked models are inherently $\mathcal{U}$-trustworthy. Furthermore,
we advocate for the adoption of the AUC metric as the preferred measure of
trustworthiness. By offering both theoretical guarantees and experimental
validation, AUC enables robust evaluation of trustworthiness, thereby enhancing
model selection and hyperparameter tuning to yield more trustworthy outcomes.
Related papers
- Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression [109.23761449840222]
This study conducts the first, thorough evaluation of leading Large Language Models (LLMs)
We find that quantization is currently a more effective approach than pruning in achieving efficiency and trustworthiness simultaneously.
arXiv Detail & Related papers (2024-03-18T01:38:19Z) - Did You Mean...? Confidence-based Trade-offs in Semantic Parsing [52.28988386710333]
We show how a calibrated model can help balance common trade-offs in task-oriented parsing.
We then examine how confidence scores can help optimize the trade-off between usability and safety.
arXiv Detail & Related papers (2023-03-29T17:07:26Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
We introduce a new approach of self-supervised probing, which enables us to check and mitigate the overconfidence issue for a trained model.
We provide a simple yet effective framework, which can be flexibly applied to existing trustworthiness-related methods in a plug-and-play manner.
arXiv Detail & Related papers (2023-02-06T08:57:20Z) - Improving the Reliability for Confidence Estimation [16.952133489480776]
Confidence estimation is a task that aims to evaluate the trustworthiness of the model's prediction output during deployment.
Previous works have outlined two important qualities that a reliable confidence estimation model should possess.
We propose a meta-learning framework that can simultaneously improve upon both qualities in a confidence estimation model.
arXiv Detail & Related papers (2022-10-13T06:34:23Z) - MACEst: The reliable and trustworthy Model Agnostic Confidence Estimator [0.17188280334580192]
We argue that any confidence estimates based upon standard machine learning point prediction algorithms are fundamentally flawed.
We present MACEst, a Model Agnostic Confidence Estimator, which provides reliable and trustworthy confidence estimates.
arXiv Detail & Related papers (2021-09-02T14:34:06Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Insights into Fairness through Trust: Multi-scale Trust Quantification
for Financial Deep Learning [94.65749466106664]
A fundamental aspect of fairness that has not been explored in financial deep learning is the concept of trust.
We conduct multi-scale trust quantification on a deep neural network for the purpose of credit card default prediction.
arXiv Detail & Related papers (2020-11-03T19:05:07Z) - Where Does Trust Break Down? A Quantitative Trust Analysis of Deep
Neural Networks via Trust Matrix and Conditional Trust Densities [94.65749466106664]
We introduce the concept of trust matrix, a novel trust quantification strategy.
A trust matrix defines the expected question-answer trust for a given actor-oracle answer scenario.
We further extend the concept of trust densities with the notion of conditional trust densities.
arXiv Detail & Related papers (2020-09-30T14:33:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.