REDriver: Runtime Enforcement for Autonomous Vehicles
- URL: http://arxiv.org/abs/2401.02253v1
- Date: Thu, 4 Jan 2024 13:08:38 GMT
- Title: REDriver: Runtime Enforcement for Autonomous Vehicles
- Authors: Yang Sun, Christopher M. Poskitt, Xiaodong Zhang, Jun Sun
- Abstract summary: We propose REDriver, a general and modular approach to runtime enforcement of autonomous driving systems.
ReDriver monitors the planned trajectory of the ADS based on a quantitative semantics of STL.
It uses a gradient-driven algorithm to repair the trajectory when a violation of the specification is likely.
- Score: 6.97499033700151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving systems (ADSs) integrate sensing, perception, drive
control, and several other critical tasks in autonomous vehicles, motivating
research into techniques for assessing their safety. While there are several
approaches for testing and analysing them in high-fidelity simulators, ADSs may
still encounter additional critical scenarios beyond those covered once they
are deployed on real roads. An additional level of confidence can be
established by monitoring and enforcing critical properties when the ADS is
running. Existing work, however, is only able to monitor simple safety
properties (e.g., avoidance of collisions) and is limited to blunt enforcement
mechanisms such as hitting the emergency brakes. In this work, we propose
REDriver, a general and modular approach to runtime enforcement, in which users
can specify a broad range of properties (e.g., national traffic laws) in a
specification language based on signal temporal logic (STL). REDriver monitors
the planned trajectory of the ADS based on a quantitative semantics of STL, and
uses a gradient-driven algorithm to repair the trajectory when a violation of
the specification is likely. We implemented REDriver for two versions of Apollo
(i.e., a popular ADS), and subjected it to a benchmark of violations of Chinese
traffic laws. The results show that REDriver significantly improves Apollo's
conformance to the specification with minimal overhead.
Related papers
- Characterization and Mitigation of Insufficiencies in Automated Driving Systems [0.5842419815638352]
Automated Driving (AD) systems have the potential to increase safety, comfort and energy efficiency.
The commercial deployment and wide adoption of ADS have been moderate, partially due to system functional insufficiencies (FI) that undermine passenger safety and lead to hazardous situations on the road.
This study aims to formulate a generic architectural design pattern to improve FI mitigation and enable faster commercial deployment of ADS.
arXiv Detail & Related papers (2024-04-15T08:19:13Z) - Towards Automated Driving Violation Cause Analysis in Scenario-Based
Testing for Autonomous Driving Systems [22.872694649245044]
We propose a novel driving violation cause analysis (DVCA) tool.
Our tool can achieve perfect component-level attribution accuracy (100%) and almost (>98%) perfect message-level accuracy.
arXiv Detail & Related papers (2024-01-19T01:12:37Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Spatial-Temporal Anomaly Detection for Sensor Attacks in Autonomous
Vehicles [1.7188280334580195]
Time-of-flight (ToF) distance measurement devices are vulnerable to spoofing, triggering and false data injection attacks.
We propose a spatial-temporal anomaly detection model textitSTAnDS which incorporates a residual error spatial detector, with a time-based expected change detection.
arXiv Detail & Related papers (2022-12-15T12:21:27Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - DeepGuard: A Framework for Safeguarding Autonomous Driving Systems from
Inconsistent Behavior [0.1529342790344802]
The deep neural networks (DNNs)based autonomous driving systems (ADSs) are expected to reduce road accidents and improve safety in the transportation domain.
DNN based ADS sometimes exhibit erroneous or unexpected behaviors due to unexpected driving conditions which may cause accidents.
This study proposes an autoencoder and time series analysis based anomaly detection system to prevent the safety critical inconsistent behavior of autonomous vehicles at runtime.
arXiv Detail & Related papers (2021-11-18T06:00:54Z) - Neural Network Guided Evolutionary Fuzzing for Finding Traffic
Violations of Autonomous Vehicles [15.702721819948623]
Existing testing methods are inadequate for checking the end-to-end behaviors of autonomous vehicles.
We propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators' API grammars.
AutoFuzz efficiently finds hundreds of realistic traffic violations resembling real-world crashes.
arXiv Detail & Related papers (2021-09-13T17:05:43Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.