論文の概要: Lightweight Fish Classification Model for Sustainable Marine Management:
Indonesian Case
- arxiv url: http://arxiv.org/abs/2401.02278v1
- Date: Thu, 4 Jan 2024 13:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-05 14:55:51.073864
- Title: Lightweight Fish Classification Model for Sustainable Marine Management:
Indonesian Case
- Title(参考訳): 持続的海洋管理のための軽量魚分類モデル:インドネシア
- Authors: Febrian Kurniawan, Gandeva Bayu Satrya, Firuz Kamalov
- Abstract要約: オーバーフィッシングは 持続可能な海洋開発における 主要な問題の一つです
本研究は,保護魚種の識別を支援する魚類分類技術の進歩について提案する。
インドネシア列島沖で発見された魚の37,462枚の画像のラベル付きデータセットを収集した。
- 参考スコア(独自算出の注目度): 2.94944680995069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enormous demand for seafood products has led to exploitation of marine
resources and near-extinction of some species. In particular, overfishing is
one the main issues in sustainable marine development. In alignment with the
protection of marine resources and sustainable fishing, this study proposes to
advance fish classification techniques that support identifying protected fish
species using state-of-the-art machine learning. We use a custom modification
of the MobileNet model to design a lightweight classifier called M-MobileNet
that is capable of running on limited hardware. As part of the study, we
compiled a labeled dataset of 37,462 images of fish found in the waters of the
Indonesian archipelago. The proposed model is trained on the dataset to
classify images of the captured fish into their species and give
recommendations on whether they are consumable or not. Our modified MobileNet
model uses only 50\% of the top layer parameters with about 42% GTX 860M
utility and achieves up to 97% accuracy in fish classification and determining
its consumability. Given the limited computing capacity available on many
fishing vessels, the proposed model provides a practical solution to on-site
fish classification. In addition, synchronized implementation of the proposed
model on multiple vessels can supply valuable information about the movement
and location of different species of fish.
- Abstract(参考訳): 魚介類に対する膨大な需要は、海洋資源の搾取と一部の種の絶滅に繋がった。
特に、過剰漁は持続可能な海洋開発の主要な課題である。
本研究は, 海洋資源の保護と漁業の持続性に則って, 最先端の機械学習を用いた魚種識別を支援する魚分類手法を提案する。
限られたハードウェアで動作可能なm-mobilenetと呼ばれる軽量な分類器を設計するために、mobilenetモデルのカスタム変更を使用します。
この研究の一環として、インドネシア列島で発見された魚の37,462枚の画像のラベル付きデータセットをまとめた。
提案モデルは,捕獲した魚のイメージを種に分類し,消費可能か否かを推薦するデータセットに基づいて訓練される。
修正されたMobileNetモデルでは,GTX 860Mユーティリティが約42%の上位層のパラメータの50倍しか使用せず,魚の分類と消費性判定において最大97%の精度を実現している。
多くの漁船で利用可能な計算能力の制限を考えると、提案モデルは現場での魚の分類に実用的な解決策を提供する。
さらに,提案手法を複数容器に同期的に実装することで,異なる魚種の動きや位置に関する貴重な情報を得ることができる。
関連論文リスト
- A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
本研究は, 船橋に設置した静止カメラ1台が捉えた運用用封筒内の海像の活用に焦点を当てた。
収集した画像は、深層学習モデルを訓練し、ビューフォートスケールに基づいて海の状態を自動的に認識する。
論文 参考訳(メタデータ) (2024-07-04T09:07:25Z) - FishNet: Deep Neural Networks for Low-Cost Fish Stock Estimation [0.0]
FishNetは、分類分類と魚の大きさ推定の両方を自動化したコンピュータビジョンシステムである。
我々は163種の1.2万魚を含む30万枚の手ラベル画像のデータセットを使用する。
魚の区分け作業では92%、単一魚種分類では89%、魚長推定では2.3cmの平均絶対誤差が達成されている。
論文 参考訳(メタデータ) (2024-03-16T12:44:08Z) - WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database [49.1574468325115]
textbfWhaleNet (Wavelet Highly Adaptive Learning Ensemble Network) は海洋哺乳動物の発声を分類するための高度な深層アンサンブルアーキテクチャである。
既存のアーキテクチャよりも8-10%の精度で分類精度を向上し、分類精度は9,7.61%である。
論文 参考訳(メタデータ) (2024-02-20T11:36:23Z) - Experiential-Informed Data Reconstruction for Fishery Sustainability and Policies in the Azores [3.2873782624127834]
我々は2010年から2017年にかけてアゾレス諸島の漁獲データ収集プログラムのユニークなデータセットに焦点を当てた。
ドメイン知識と機械学習を利用して,魚の上陸毎にメティア関連情報を検索し,関連づける。
論文 参考訳(メタデータ) (2023-09-17T17:17:38Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - FisHook -- An Optimized Approach to Marine Specie Classification using
MobileNetV2 [5.565562836494568]
海洋生物の分類とモニタリングは、その分布、人口動態、そしてそれらに対する人間の活動の影響を理解するのに役立ちます。
ディープラーニングアルゴリズムは、海洋生物を効率的に分類し、海洋生態系の監視と管理を容易にする。
論文 参考訳(メタデータ) (2023-04-04T04:30:25Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
本稿では,映像中の生物学的行動を検出するための,効率的なコンピュータビジョンと深層学習に基づく手法を提案する。
TempNetはエンコーダブリッジと残留ブロックを使用して、2段階の空間的、そして時間的、エンコーダでモデル性能を維持する。
本研究では,サブルフィッシュ (Anoplopoma fimbria) 幼虫の検出への応用を実証する。
論文 参考訳(メタデータ) (2022-11-17T23:55:12Z) - Transformer-based Self-Supervised Fish Segmentation in Underwater Videos [1.9249287163937976]
魚の高品質なセグメンテーションのための自己スーパービジョンを用いたトランスフォーマー方式を提案する。
1つのデータセットから水中ビデオのセットをトレーニングすると、提案モデルは従来のCNNベースおよびTransformerベースの自己教師方式を上回ることが示される。
論文 参考訳(メタデータ) (2022-06-11T01:20:48Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
水中ビデオでサブルフィッシュ(Anoplopoma fimbria)の発芽行動のデータセットを提供し,その上での深層学習(DL)法による行動検出について検討した。
提案する検出システムは,Long Short-Term Memory(LSTM)ネットワークを用いて,サブルフィッシュの起動動作を識別する。
論文 参考訳(メタデータ) (2020-11-28T05:51:19Z) - Temperate Fish Detection and Classification: a Deep Learning based
Approach [6.282069822653608]
本研究では,2段階の深層学習手法を提案する。
最初のステップは、種や性別によらず、画像中の各魚を検出することです。
第2のステップでは、画像中の各魚を事前フィルタリングせずに分類するために、Squeeze-and-Excitation (SE)アーキテクチャを備えた畳み込みニューラルネットワーク(CNN)を採用する。
論文 参考訳(メタデータ) (2020-05-14T12:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。