論文の概要: A Computer Vision Approach to Estimate the Localized Sea State
- arxiv url: http://arxiv.org/abs/2407.03755v2
- Date: Mon, 8 Jul 2024 14:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 10:33:20.965942
- Title: A Computer Vision Approach to Estimate the Localized Sea State
- Title(参考訳): 局所海状態推定のためのコンピュータビジョンアプローチ
- Authors: Aleksandar Vorkapic, Miran Pobar, Marina Ivasic-Kos,
- Abstract要約: 本研究は, 船橋に設置した静止カメラ1台が捉えた運用用封筒内の海像の活用に焦点を当てた。
収集した画像は、深層学習モデルを訓練し、ビューフォートスケールに基づいて海の状態を自動的に認識する。
- 参考スコア(独自算出の注目度): 45.498315114762484
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research presents a novel application of computer vision (CV) and deep learning methods for real-time sea state recognition, aiming to contribute to improving the operational safety and energy efficiency of seagoing vessels, key factors in meeting the legislative carbon reduction targets. Our work focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge. The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale. To recognize the sea state, we used 4 state-of-the-art deep neural networks with different characteristics that proved useful in various computer vision tasks: Resnet-101, NASNet, MobileNet_v2, and Transformer ViT-b32. Furthermore, we have defined a unique large-scale dataset, collected over a broad range of sea conditions from an ocean-going vessel prepared for machine learning. We used the transfer learning approach to fine-tune the models on our dataset. The obtained results demonstrate the potential for this approach to complement traditional methods, particularly where in-situ measurements are unfeasible or interpolated weather buoy data is insufficiently accurate. This study sets the groundwork for further development of sea state classification models to address recognized gaps in maritime research and enable safer and more efficient maritime operations.
- Abstract(参考訳): 本研究は,船舶の運転安全性とエネルギー効率の向上に寄与することを目的とした,コンピュータビジョン(CV)と深層学習のリアルタイム海面認識への応用について述べる。
本研究は, 船橋に設置した静止カメラ1台で捉えた, 運用用封筒内の海像の活用に焦点を当てた。
収集した画像は、深層学習モデルを訓練し、ビューフォートスケールに基づいて海の状態を自動的に認識する。
海の状態を認識するために,Resnet-101,NASNet,MobileNet_v2,Transformer ViT-b32という,さまざまなコンピュータビジョンタスクで有用な特徴を持つ,最先端の4つのディープニューラルネットワークを使用した。
さらに、機械学習のために準備された海洋航行船から広範囲の海域で収集された、ユニークな大規模データセットを定義した。
データセット上のモデルを微調整するために、転送学習アプローチを使用しました。
得られた結果から, 従来の手法を補完する手法として, 特にその場測定が不可能であったり, 補間された気象ブイデータが不十分であったりする可能性が示された。
本研究は、海洋研究における認識されたギャップに対処し、より安全で効率的な海洋活動を可能にするため、海相分類モデルのさらなる発展に向けた基礎となるものである。
関連論文リスト
- Real-time Ship Recognition and Georeferencing for the Improvement of Maritime Situational Awareness [0.0]
この論文は、ディープラーニングとコンピュータビジョンを活用して、リアルタイムの船舶認識とジオレファリングを促進するための調査である。
3,505枚の画像と11,625枚の船体マスクを備えた新しいデータセットであるShipSGが導入された。
カスタムリアルタイムセグメンテーションアーキテクチャであるScatYOLOv8+CBAMはNVIDIA Jetson AGX Xavier組み込みシステム用に設計されている。
論文 参考訳(メタデータ) (2024-10-07T11:43:42Z) - Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
海上輸送産業はコンピュータビジョン人工知能(AI)の進歩によって急速に進化している
海洋環境における物体認識は、光の反射、干渉、激しい照明、様々な気象条件といった課題に直面します。
既存のAI認識モデルとデータセットは、自律ナビゲーションシステムを構成するのに限定的に適している。
論文 参考訳(メタデータ) (2024-07-12T05:48:53Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
本稿では,海上監視のための深部再帰モデルに基づく手法を,公開可能な自動識別システム(AIS)データ上で提案する。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
提案手法は,観測された動作パターンと再構成された動作パターンの計算誤差に対するしきい値決定機構に基づく。
論文 参考訳(メタデータ) (2024-06-14T12:15:15Z) - Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network [0.0]
本稿では,ウェーブレット変換に基づく畳み込みニューラルネットワークによるSAR画像からの物体認識手法を提案する。
Sentinel-1 SAR-Cによるインド西部沿岸域の二重分極データ取得を含む。
論文 参考訳(メタデータ) (2023-04-23T18:09:44Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - A Transfer Learning-Based Approach to Marine Vessel Re-Identification [0.0]
本稿では, 海上における船舶の揺れ状況をシミュレーションし, 移動動的アライメントアルゴリズムを提案する。
平均平均精度(mAP)を10.2%改善し、最初のヒットレート(Rank1)を4.9%改善する。
論文 参考訳(メタデータ) (2022-07-29T06:36:10Z) - xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture
Radar Imagery [52.67592123500567]
世界の漁業は海洋資源や生態系に大きな脅威をもたらす。
夜間または夜間、全天候下で暗黒船の自動検出が可能となった。
xView3-SARは、Sentinel-1ミッションから得られた1000近い分析可能なSAR画像で構成されている。
論文 参考訳(メタデータ) (2022-06-02T06:53:45Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
本稿では,事前学習した教師付き単分子深度ネットワークに対する自己教師付き学習手法を提案する。
本手法は移動ロボットナビゲーションなどの様々な応用に有用であり,多様な環境に適用可能である。
論文 参考訳(メタデータ) (2022-03-10T12:28:42Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。