Path-based Explanation for Knowledge Graph Completion
- URL: http://arxiv.org/abs/2401.02290v2
- Date: Fri, 18 Oct 2024 01:58:39 GMT
- Title: Path-based Explanation for Knowledge Graph Completion
- Authors: Heng Chang, Jiangnan Ye, Alejo Lopez Avila, Jinhua Du, Jia Li,
- Abstract summary: Proper explanations for the results of GNN-based Knowledge Graph Completion models increase model transparency.
Existing practices for explaining KGC tasks rely on instance/subgraph-based approaches.
We propose Power-Link, the first path-based KGC explainer that explores GNN-based models.
- Score: 17.541247786437484
- License:
- Abstract: Graph Neural Networks (GNNs) have achieved great success in Knowledge Graph Completion (KGC) by modelling how entities and relations interact in recent years. However, the explanation of the predicted facts has not caught the necessary attention. Proper explanations for the results of GNN-based KGC models increase model transparency and help researchers develop more reliable models. Existing practices for explaining KGC tasks rely on instance/subgraph-based approaches, while in some scenarios, paths can provide more user-friendly and interpretable explanations. Nonetheless, the methods for generating path-based explanations for KGs have not been well-explored. To address this gap, we propose Power-Link, the first path-based KGC explainer that explores GNN-based models. We design a novel simplified graph-powering technique, which enables the generation of path-based explanations with a fully parallelisable and memory-efficient training scheme. We further introduce three new metrics for quantitative evaluation of the explanations, together with a qualitative human evaluation. Extensive experiments demonstrate that Power-Link outperforms the SOTA baselines in interpretability, efficiency, and scalability.
Related papers
- Factorized Explainer for Graph Neural Networks [7.382632811417645]
Graph Neural Networks (GNNs) have received increasing attention due to their ability to learn from graph-structured data.
Post-hoc instance-level explanation methods have been proposed to understand GNN predictions.
We introduce a novel factorized explanation model with theoretical performance guarantees.
arXiv Detail & Related papers (2023-12-09T15:29:45Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous
Link Prediction [37.57586847539004]
Transparency and accountability have become major concerns for black-box machine learning (ML) models.
We propose Path-based GNN Explanation for heterogeneous Link prediction (PaGE-Link) that generates explanations with connection interpretability.
We show that explanations generated by PaGE-Link improve AUC for recommendation on citation and user-item graphs by 9 - 35% and are chosen by 78.79% of responses in human evaluation.
arXiv Detail & Related papers (2023-02-24T05:43:47Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - A Meta-Learning Approach for Training Explainable Graph Neural Networks [10.11960004698409]
We propose a meta-learning framework for improving the level of explainability of a GNN directly at training time.
Our framework jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms.
Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process.
arXiv Detail & Related papers (2021-09-20T11:09:10Z) - GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph
Neural Networks [0.3441021278275805]
GCExplainer is an unsupervised approach for post-hoc discovery and extraction of global concept-based explanations for graph neural networks (GNNs)
We demonstrate the success of our technique on five node classification datasets and two graph classification datasets, showing that we are able to discover and extract high-quality concept representations by putting the human in the loop.
arXiv Detail & Related papers (2021-07-25T20:52:48Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.