LLaMA Pro: Progressive LLaMA with Block Expansion
- URL: http://arxiv.org/abs/2401.02415v2
- Date: Thu, 30 May 2024 04:45:34 GMT
- Title: LLaMA Pro: Progressive LLaMA with Block Expansion
- Authors: Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ying Shan, Ping Luo,
- Abstract summary: We propose a new post-pretraining method for Large Language Models (LLMs) with an expansion of Transformer blocks.
We tune the expanded blocks using only new corpus, efficiently and effectively improving the model's knowledge without catastrophic forgetting.
In this paper, we experiment on the corpus of code and math, yielding LLaMA Pro-8.3B, a versatile foundation model from LLaMA2-7B.
- Score: 66.39213657252279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans generally acquire new skills without compromising the old; however, the opposite holds for Large Language Models (LLMs), e.g., from LLaMA to CodeLLaMA. To this end, we propose a new post-pretraining method for LLMs with an expansion of Transformer blocks. We tune the expanded blocks using only new corpus, efficiently and effectively improving the model's knowledge without catastrophic forgetting. In this paper, we experiment on the corpus of code and math, yielding LLaMA Pro-8.3B, a versatile foundation model initialized from LLaMA2-7B, excelling in general tasks, programming, and mathematics. LLaMA Pro and its instruction-following counterpart (LLaMA Pro-Instruct) achieve advanced performance among various benchmarks, demonstrating superiority over existing open models in the LLaMA family and the immense potential of reasoning and addressing diverse tasks as an intelligent agent. Our findings provide valuable insights into integrating natural and programming languages, laying a solid foundation for developing advanced language agents that operate effectively in various environments.
Related papers
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Genshin: General Shield for Natural Language Processing with Large Language Models [6.228210545695852]
Large language models (LLMs) have been trending recently, demonstrating considerable advancement and generalizability power in countless domains.
LLMs create an even bigger black box exacerbating opacity, with interpretability limited to few approaches.
We propose a novel cascading framework called Genshin that combines the generalizability of the LLM, the discrimination of the median model, and the interpretability of the simple model.
arXiv Detail & Related papers (2024-05-29T04:04:05Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Label Supervised LLaMA Finetuning [13.939718306233617]
In this paper, we introduce a label-supervised adaptation for Large Language Models (LLMs)
We extract latent representations from the final LLaMA layer and project them into the label space to compute the cross-entropy loss.
Remarkably, without intricate prompt engineering or external knowledge, LS-LLaMA substantially outperforms LLMs ten times its size in scale.
arXiv Detail & Related papers (2023-10-02T13:53:03Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
Multi-modal large language models (MLLMs) are trained based on large language models (LLM)
While they excel in multi-modal tasks, the pure NLP abilities of MLLMs are often underestimated and left untested.
We show that visual instruction tuning, a prevailing strategy for transitioning LLMs into MLLMs, unexpectedly and interestingly helps models attain both improved truthfulness and ethical alignment.
arXiv Detail & Related papers (2023-09-13T17:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.