論文の概要: Unsupervised hard Negative Augmentation for contrastive learning
- arxiv url: http://arxiv.org/abs/2401.02594v1
- Date: Fri, 5 Jan 2024 01:31:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 16:21:03.760879
- Title: Unsupervised hard Negative Augmentation for contrastive learning
- Title(参考訳): コントラスト学習のための教師なしハード負の強化
- Authors: Yuxuan Shu and Vasileios Lampos
- Abstract要約: Unsupervised hard Negative Augmentation (UNA) は、TF-IDF検索モデルに基づく合成負のインスタンスを生成する手法である。
UNAはTF-IDFスコアを使用して、文中の単語の重要性を認識し、それに対する用語を置換することで負のサンプルを生成する。
- 参考スコア(独自算出の注目度): 0.40792653193642503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Unsupervised hard Negative Augmentation (UNA), a method that
generates synthetic negative instances based on the term frequency-inverse
document frequency (TF-IDF) retrieval model. UNA uses TF-IDF scores to
ascertain the perceived importance of terms in a sentence and then produces
negative samples by replacing terms with respect to that. Our experiments
demonstrate that models trained with UNA improve the overall performance in
semantic textual similarity tasks. Additional performance gains are obtained
when combining UNA with the paraphrasing augmentation. Further results show
that our method is compatible with different backbone models. Ablation studies
also support the choice of having a TF-IDF-driven control on negative
augmentation.
- Abstract(参考訳): 周波数逆文書周波数(TF-IDF)検索モデルに基づく合成負のインスタンスを生成する手法であるunsupervised hard Negative Augmentation (UNA)を提案する。
unaはtf-idfスコアを使用して文中の用語の重要性を判断し、それに関して用語を置き換えることで否定的なサンプルを生成する。
実験により,UNAで訓練したモデルにより,意味的テキスト類似性タスクの全体的な性能が向上することが示された。
unaとパラフレージング拡張を組み合わせることで、さらなるパフォーマンス向上が得られる。
以上の結果から,本手法は異なるバックボーンモデルと適合することが示された。
アブレーション研究は、負の増強に対するTF-IDFによる制御の選択も支持している。
関連論文リスト
- Contrastive CFG: Improving CFG in Diffusion Models by Contrasting Positive and Negative Concepts [55.298031232672734]
As-Free Guidance (CFG) は条件拡散モデルサンプリングに有効であることが証明された。
対照的な損失を用いた負のCFG誘導を強化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T03:29:27Z) - KDMCSE: Knowledge Distillation Multimodal Sentence Embeddings with Adaptive Angular margin Contrastive Learning [31.139620652818838]
マルチモーダル表現の識別と一般化性を高める新しい手法であるKDMCSEを提案する。
我々はまた、角空間内のマージンを強化することにより差別的表現を強化する新しいコントラスト的目的であるAdapACSEを導入する。
論文 参考訳(メタデータ) (2024-03-26T08:32:39Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Improving Contrastive Learning of Sentence Embeddings with Focal-InfoNCE [13.494159547236425]
本研究では、SimCSEとハードネガティブマイニングを組み合わせた教師なしのコントラスト学習フレームワークを提案する。
提案した焦点情報処理関数は、対照的な目的に自己対応変調項を導入し、容易な負に関連付けられた損失を減らし、強負に焦点を絞ったモデルを促進する。
論文 参考訳(メタデータ) (2023-10-10T18:15:24Z) - Identical and Fraternal Twins: Fine-Grained Semantic Contrastive
Learning of Sentence Representations [6.265789210037749]
コントラスト学習フレームワークのIdentical Twins と Fraternal Twins を導入する。
また,提案したツインズ・ロスの有効性を証明するために,概念実証実験と対照的な目的を組み合わせる。
論文 参考訳(メタデータ) (2023-07-20T15:02:42Z) - PartMix: Regularization Strategy to Learn Part Discovery for
Visible-Infrared Person Re-identification [76.40417061480564]
本稿では、パートベース可視赤外線人物再識別(VI-ReID)モデルに対して、PartMixと呼ばれる新しいデータ拡張手法を提案する。
部分記述子をモダリティに混合することにより、拡張サンプルを合成し、パートベースVI-ReIDモデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-04-04T05:21:23Z) - Mitigating Catastrophic Forgetting in Scheduled Sampling with Elastic
Weight Consolidation in Neural Machine Translation [15.581515781839656]
最大推定値で訓練された自己回帰モデルは、露出バイアスに悩まされる。
露光バイアスの軽減と出力品質の維持のトレードオフとして, 弾性重み強化(Elastic Weight Consolidation)を提案する。
2つのIWSLT'14翻訳タスクの実験は、我々のアプローチが破滅的な忘れを軽減し、BLEUを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-09-13T20:37:58Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
本稿では,自己指導型コントラスト学習のための新たな偽陰性検出手法を提案する。
対照的な学習では、検出された偽陰性を明示的に除去する2つの戦略について議論する。
提案手法は,制限された計算内での複数のベンチマークにおいて,他の自己教師付きコントラスト学習フレームワークよりも優れる。
論文 参考訳(メタデータ) (2021-06-07T15:29:14Z) - Understanding Hard Negatives in Noise Contrastive Estimation [21.602701327267905]
ハードマイナスの役割を理解するための分析ツールを開発した。
テキスト検索に用いられる様々なアーキテクチャを統一するスコア関数の一般的な形式を導出する。
論文 参考訳(メタデータ) (2021-04-13T14:42:41Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
コントラスト学習を微調整に適用することでさらにメリットが得られるか検討する。
本研究では,コントラスト正規化調律(core-tuning)を提案する。
論文 参考訳(メタデータ) (2021-02-12T16:31:24Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
画像分類において、サンプルワイドの不整合は「負のフリップ」として現れる
新しいモデルは、古い(参照)モデルによって正しく分類されたテストサンプルの出力を誤って予測する。
そこで本研究では,PC トレーニングのための簡易なアプローチである Focal Distillation を提案する。
論文 参考訳(メタデータ) (2020-11-18T09:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。