DocGraphLM: Documental Graph Language Model for Information Extraction
- URL: http://arxiv.org/abs/2401.02823v1
- Date: Fri, 5 Jan 2024 14:15:36 GMT
- Title: DocGraphLM: Documental Graph Language Model for Information Extraction
- Authors: Dongsheng Wang, Zhiqiang Ma, Armineh Nourbakhsh, Kang Gu, Sameena Shah
- Abstract summary: We introduce DocGraphLM, a framework that combines pre-trained language models with graph semantics.
To achieve this, we propose 1) a joint encoder architecture to represent documents, and 2) a novel link prediction approach to reconstruct document graphs.
Our experiments on three SotA datasets show consistent improvement on IE and QA tasks with the adoption of graph features.
- Score: 15.649726614383388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in Visually Rich Document Understanding (VrDU) have enabled
information extraction and question answering over documents with complex
layouts. Two tropes of architectures have emerged -- transformer-based models
inspired by LLMs, and Graph Neural Networks. In this paper, we introduce
DocGraphLM, a novel framework that combines pre-trained language models with
graph semantics. To achieve this, we propose 1) a joint encoder architecture to
represent documents, and 2) a novel link prediction approach to reconstruct
document graphs. DocGraphLM predicts both directions and distances between
nodes using a convergent joint loss function that prioritizes neighborhood
restoration and downweighs distant node detection. Our experiments on three
SotA datasets show consistent improvement on IE and QA tasks with the adoption
of graph features. Moreover, we report that adopting the graph features
accelerates convergence in the learning process during training, despite being
solely constructed through link prediction.
Related papers
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Enhancing Keyphrase Extraction from Long Scientific Documents using
Graph Embeddings [9.884735234974967]
We show that augmenting a language model with graph embeddings provides a more comprehensive semantic understanding of words.
We demonstrate that enhancing PLMs with graph embeddings outperforms state-of-the-art models on long documents.
arXiv Detail & Related papers (2023-05-16T09:44:38Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Augmented Abstractive Summarization With Document-LevelSemantic Graph [3.0272794341021667]
Previous abstractive methods apply sequence-to-sequence structures to generate summary without a module.
We utilize semantic graph to boost the generation performance.
A novel neural decoder is presented to leverage the information of such entity graphs.
arXiv Detail & Related papers (2021-09-13T15:12:34Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - A Neural Edge-Editing Approach for Document-Level Relation Graph
Extraction [9.449257113935461]
We treat relations in a document as a relation graph among entities.
The relation graph is iteratively constructed by editing edges of an initial graph.
The way to edit edges is to classify them in a close-first manner.
arXiv Detail & Related papers (2021-06-18T03:46:49Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.