論文の概要: CANAMRF: An Attention-Based Model for Multimodal Depression Detection
- arxiv url: http://arxiv.org/abs/2401.02995v1
- Date: Thu, 4 Jan 2024 12:08:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 20:57:39.968205
- Title: CANAMRF: An Attention-Based Model for Multimodal Depression Detection
- Title(参考訳): CANAMRF:マルチモーダル抑うつ検出のための注意ベースモデル
- Authors: Yuntao Wei, Yuzhe Zhang, Shuyang Zhang, and Hong Zhang
- Abstract要約: 適応型マルチモーダルリカレントフュージョン(CANAMRF)を用いたマルチモーダル抑うつ検出のためのクロスモーダルアテンションネットワークを提案する。
CANAMRFは、マルチモーダル特徴抽出器、アダプティブマルチモーダルリカレントフュージョンモジュール、ハイブリッドアテンションモジュールによって構成されている。
- 参考スコア(独自算出の注目度): 7.266707571724883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal depression detection is an important research topic that aims to
predict human mental states using multimodal data. Previous methods treat
different modalities equally and fuse each modality by na\"ive mathematical
operations without measuring the relative importance between them, which cannot
obtain well-performed multimodal representations for downstream depression
tasks. In order to tackle the aforementioned concern, we present a Cross-modal
Attention Network with Adaptive Multi-modal Recurrent Fusion (CANAMRF) for
multimodal depression detection. CANAMRF is constructed by a multimodal feature
extractor, an Adaptive Multimodal Recurrent Fusion module, and a Hybrid
Attention Module. Through experimentation on two benchmark datasets, CANAMRF
demonstrates state-of-the-art performance, underscoring the effectiveness of
our proposed approach.
- Abstract(参考訳): マルチモーダルうつ病検出は、マルチモーダルデータを用いた人間の精神状態の予測を目的とした重要な研究課題である。
従来の手法では, 異なるモダリティを等しく扱うことができ, それぞれのモダリティを, 相対的重要性を測ることなく, na\ な数学的操作によって融合させることができた。
以上の問題に対処するため,適応型マルチモーダルリカレントフュージョン(CANAMRF)を用いたマルチモーダルうつ病検出のためのクロスモーダルアテンションネットワークを提案する。
CANAMRFは、マルチモーダル特徴抽出器、アダプティブマルチモーダルリカレントフュージョンモジュール、ハイブリッドアテンションモジュールによって構成されている。
CANAMRFは2つのベンチマークデータセットの実験を通じて最先端の性能を示し、提案手法の有効性を実証する。
関連論文リスト
- RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
本稿では,2段階のロバスト・モードアリティ不完全融合とFlaAmewoRkの検出について提案する。
我々のブートストラッピング哲学は、MIIADの2段階を強化し、マルチモーダルトランスの堅牢性を向上させることである。
実験の結果,提案手法は従来のMIAD法よりも有効性とロバスト性に優れていた。
論文 参考訳(メタデータ) (2024-10-02T16:47:55Z) - Multi-modal Crowd Counting via a Broker Modality [64.5356816448361]
マルチモーダルな群衆カウントは、視覚画像と熱/深度画像の両方から群衆密度を推定する。
本稿では,補助的ブローカーのモダリティを導入し,そのタスクを3つのモーダル学習問題とする新しい手法を提案する。
我々はこのブローカーのモダリティを生成するための融合法を考案し、近代的な拡散に基づく核融合モデルの非拡散的軽量化を生かした。
論文 参考訳(メタデータ) (2024-07-10T10:13:11Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
マルチスペクトル検出におけるダブルストリームネットワークは、マルチモーダルデータに2つの異なる特徴抽出枝を用いる。
これにより、組み込みデバイスにおける多スペクトル歩行者検出が自律システムに広く採用されるのを妨げている。
本稿では,教師ネットワークの本来のモーダル特徴を完全に活用できる適応型モーダル核融合蒸留(AMFD)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2024-05-21T17:17:17Z) - Deep Equilibrium Multimodal Fusion [88.04713412107947]
多重モーダル融合は、複数のモーダルに存在する相補的な情報を統合し、近年多くの注目を集めている。
本稿では,動的多モード核融合プロセスの固定点を求めることにより,多モード核融合に対する新しいDeep equilibrium (DEQ)法を提案する。
BRCA,MM-IMDB,CMU-MOSI,SUN RGB-D,VQA-v2の実験により,DEC融合の優位性が示された。
論文 参考訳(メタデータ) (2023-06-29T03:02:20Z) - Provable Dynamic Fusion for Low-Quality Multimodal Data [94.39538027450948]
動的マルチモーダル融合は、有望な学習パラダイムとして現れる。
広く使われているにもかかわらず、この分野の理論的正当化は依然として顕著に欠落している。
本稿では、一般化の観点から最もポピュラーなマルチモーダル融合フレームワークの下で、この問題に答える理論的理解を提供する。
QMF(Quality-Aware Multimodal Fusion)と呼ばれる新しいマルチモーダル融合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-03T08:32:35Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
モダリティ間の同調性は、特に認知に影響を及ぼすマルチモーダル融合の課題となる。
本稿では,動的モダリティゲーティング(HCT-DMG)を用いた階層型クロスモーダルトランスを提案する。
HCT-DMG: 1) 従来のマルチモーダルモデルを約0.8Mパラメータで上回り、2) 不整合が認識に影響を及ぼすハードサンプルを認識し、3) 潜在レベルの非整合性をクロスモーダルアテンションで緩和する。
論文 参考訳(メタデータ) (2023-05-23T01:24:15Z) - UniS-MMC: Multimodal Classification via Unimodality-supervised
Multimodal Contrastive Learning [29.237813880311943]
本稿では, より信頼性の高いマルチモーダル表現を, 非モーダル予測の弱い監督下で探索する新しいマルチモーダルコントラスト法を提案する。
2つの画像テキスト分類ベンチマークにおける融合特徴を用いた実験結果から,提案手法が現在最先端のマルチモーダル手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-05-16T09:18:38Z) - Depression Diagnosis and Analysis via Multimodal Multi-order Factor
Fusion [4.991507302519828]
うつ病は世界中で主要な死因であり、うつ病の診断は簡単ではない。
うつ病の自動診断のためのMMFF法を提案する。
論文 参考訳(メタデータ) (2022-12-31T17:13:06Z) - Multimodal Channel-Mixing: Channel and Spatial Masked AutoEncoder on
Facial Action Unit Detection [12.509298933267225]
本稿では,MCM(Multimodal Channel-Mixing)と呼ばれる新しいマルチモーダル再構成ネットワークを提案する。
このアプローチは、Channel-Mixingモジュールを統合して、5つのうち2つをランダムにドロップする、初期の融合設定に従っている。
このモジュールはチャネルの冗長性を低下させるだけでなく、マルチモーダル学習と再構成機能も促進し、ロバストな特徴学習をもたらす。
論文 参考訳(メタデータ) (2022-09-25T15:18:56Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。