論文の概要: SPADE: Synthesizing Assertions for Large Language Model Pipelines
- arxiv url: http://arxiv.org/abs/2401.03038v1
- Date: Fri, 5 Jan 2024 19:27:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 20:45:33.184780
- Title: SPADE: Synthesizing Assertions for Large Language Model Pipelines
- Title(参考訳): SPADE: 大規模言語モデルパイプラインのためのアサーションの合成
- Authors: Shreya Shankar, Haotian Li, Parth Asawa, Madelon Hulsebos, Yiming Lin,
J.D. Zamfirescu-Pereira, Harrison Chase, Will Fu-Hinthorn, Aditya G.
Parameswaran, Eugene Wu
- Abstract要約: SPADEは、悪いLCM出力を識別するアサーションを自動で合成する方法である。
9つの現実世界のLLMパイプラインをテストする場合、SPADEはアサーションの数を14%削減する。
- 参考スコア(独自算出の注目度): 15.901639346196413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Operationalizing large language models (LLMs) for custom, repetitive data
pipelines is challenging, particularly due to their unpredictable and
potentially catastrophic failures. Acknowledging the inevitability of these
errors, we focus on identifying when LLMs may be generating incorrect responses
when used repeatedly as part of data generation pipelines. We present SPADE, a
method for automatically synthesizing assertions that identify bad LLM outputs.
SPADE analyzes prompt version histories to create candidate assertion functions
and then selects a minimal set that fulfills both coverage and accuracy
requirements. In testing across nine different real-world LLM pipelines, SPADE
efficiently reduces the number of assertions by 14% and decreases false
failures by 21% when compared to simpler baselines.
- Abstract(参考訳): カスタムで反復的なデータパイプラインのための大規模言語モデル(llm)の運用は、特に予測不可能で破滅的な障害のために難しい。
これらのエラーの必然性を認識し、データ生成パイプラインの一部として繰り返し使用される際にllmが不正確な応答を発生させる可能性があるかを特定することに注力する。
悪質なLLM出力を識別するアサーションを自動的に合成するSPADEを提案する。
spadeはプロンプトバージョン履歴を分析して候補アサーション関数を作成し、カバレッジと精度の要件の両方を満たす最小セットを選択する。
9つの現実世界のllmパイプラインでテストする場合、spadeはアサーションの数を14%削減し、単純なベースラインと比較して21%削減する。
関連論文リスト
- SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
論文 参考訳(メタデータ) (2024-11-20T18:56:22Z) - LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA (LongHalQA) は、6Kの長い複雑な幻覚テキストからなるLLMフリー幻覚ベンチマークである。
LongHalQA は GPT4V の生成した幻覚データによって特徴付けられる。
論文 参考訳(メタデータ) (2024-10-13T18:59:58Z) - Enhancing Fault Localization Through Ordered Code Analysis with LLM Agents and Self-Reflection [8.22737389683156]
大規模言語モデル(LLM)は、コード理解と推論を強化することによって、フォールトローカライゼーションの有望な改善を提供する。
LLM4FL は,SBFL ランキングと配当戦略を統合した新しい LLM4FL の故障局所化手法である。
以上の結果から,LLM4FLはTop-1の精度でAutoFLを19.27%上回り,DeepFLやGraceといった最先端の監視技術を上回っていることがわかった。
論文 参考訳(メタデータ) (2024-09-20T16:47:34Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation [22.124234811959532]
大きな言語モデル(LLM)は、長いコンテキストを処理する際に大きな欠点を示す。
本稿では,事前学習したトランスフォーマーベースLLMに直接適用可能な新しいRAGプロンプト手法を提案する。
我々は,様々な質問応答ベンチマークにおいて,時間効率を同時に向上する手法の能力を実証する。
論文 参考訳(メタデータ) (2024-04-10T11:03:17Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
LLM-as-compilerアプローチであるSEEDは,Large Language Models(LLM)を介して,ドメイン固有のデータキュレーションソリューションを自動的に生成する。
SEEDは、4つのLCMアシストモジュールから自動的に選択し、そのタスクに最も適したハイブリッド実行パイプラインを形成する。
論文 参考訳(メタデータ) (2023-10-01T17:59:20Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
大規模言語モデル(LLM)の純粋因果推論スキルをテストする。
相関文の集合を取り、変数間の因果関係を決定する新しいタスクCorr2Causeを定式化する。
これらのモデルがタスクのランダムな性能にほぼ近い結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-09T12:09:15Z) - P-Adapters: Robustly Extracting Factual Information from Language Models
with Diverse Prompts [7.657992756210283]
埋め込み層と大規模言語モデルの第一の注意層の間に位置する軽量モデルであるP-Adaptersを紹介します。
LLMの埋め込みを入力とし、LLMに問い合わせるのに使用される連続的なプロンプトを出力する。
それらは、一貫性の12~26%の絶対的な改善と、自然言語クエリのみを使用するベースラインよりも36~50%の精度の絶対的な改善を示す。
論文 参考訳(メタデータ) (2021-10-14T11:32:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。