論文の概要: SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs
- arxiv url: http://arxiv.org/abs/2411.13547v1
- Date: Wed, 20 Nov 2024 18:56:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:34.029035
- Title: SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs
- Title(参考訳): SpecTool: ツール使用LLMのエラーを識別するためのベンチマーク
- Authors: Shirley Kokane, Ming Zhu, Tulika Awalgaonkar, Jianguo Zhang, Thai Hoang, Akshara Prabhakar, Zuxin Liu, Tian Lan, Liangwei Yang, Juntao Tan, Rithesh Murthy, Weiran Yao, Zhiwei Liu, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, Caiming Xiong, Silivo Savarese,
- Abstract要約: SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
- 参考スコア(独自算出の注目度): 77.79172008184415
- License:
- Abstract: Evaluating the output of Large Language Models (LLMs) is one of the most critical aspects of building a performant compound AI system. Since the output from LLMs propagate to downstream steps, identifying LLM errors is crucial to system performance. A common task for LLMs in AI systems is tool use. While there are several benchmark environments for evaluating LLMs on this task, they typically only give a success rate without any explanation of the failure cases. To solve this problem, we introduce SpecTool, a new benchmark to identify error patterns in LLM output on tool-use tasks. Our benchmark data set comprises of queries from diverse environments that can be used to test for the presence of seven newly characterized error patterns. Using SPECTOOL , we show that even the most prominent LLMs exhibit these error patterns in their outputs. Researchers can use the analysis and insights from SPECTOOL to guide their error mitigation strategies.
- Abstract(参考訳): 大規模言語モデル(LLM)の出力を評価することは、高性能複合AIシステムを構築する上で最も重要な側面の1つである。
LLMからの出力は下流のステップに伝播するため、LLMエラーの特定はシステム性能に不可欠である。
AIシステムにおけるLLMの一般的なタスクは、ツールの使用である。
このタスクでは、LSMを評価するためのベンチマーク環境がいくつか存在するが、通常は障害ケースの説明なしに、成功率のみを与える。
この問題を解決するために、ツール使用タスクにおけるLLM出力のエラーパターンを識別する新しいベンチマークであるSpecToolを導入する。
ベンチマークデータセットは,新たに特徴付けられた7つのエラーパターンの有無をテストするために利用可能な,多様な環境からのクエリで構成されている。
SPECTOOLを用いて、最も著名なLCMでもこれらのエラーパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
関連論文リスト
- LIME: Less Is More for MLLM Evaluation [36.29820380945517]
半自動パイプラインによるベンチマークであるLIME(Less Is More for MLLM Evaluation)を提案する。
このパイプラインは、非形式的なサンプルをフィルタリングし、イメージベースの理解を必要とするタスクに集中することで、回答のリークを取り除く。
実験の結果,LIMEはサンプル数を76%減らし,評価時間を77%減らした。
論文 参考訳(メタデータ) (2024-09-10T20:19:14Z) - Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - MEIC: Re-thinking RTL Debug Automation using LLMs [18.964523115622928]
本研究は,新しいフレームワーク,Make each Iteration Count(MEIC)を紹介する。
MEICは、構文と関数のエラーを識別し、修正するのに適している。
フレームワークを評価するため、178の共通RTLプログラミングエラーからなるオープンソースデータセットを提供する。
論文 参考訳(メタデータ) (2024-05-10T22:32:39Z) - Evaluating LLMs at Detecting Errors in LLM Responses [30.645694514606507]
この研究は、LLMによる客観的、現実的で多様なエラーからなる最初のエラー検出ベンチマークであるReaLMistakeを紹介した。
我々はReaLMistakeを用いて12の大規模言語モデルに基づいて誤り検出を行う。
論文 参考訳(メタデータ) (2024-04-04T17:19:47Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - Evaluating Diverse Large Language Models for Automatic and General Bug
Reproduction [12.851941377433285]
大規模言語モデル(LLM)は自然言語処理やコード生成に適していることが証明されている。
提案手法は,広く使用されているDefects4Jベンチマークにおいて,全バグの約3分の1を再現することができた。
論文 参考訳(メタデータ) (2023-11-08T08:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。