Energy-efficient Decentralized Learning via Graph Sparsification
- URL: http://arxiv.org/abs/2401.03083v2
- Date: Wed, 22 May 2024 19:55:19 GMT
- Title: Energy-efficient Decentralized Learning via Graph Sparsification
- Authors: Xusheng Zhang, Cho-Chun Chiu, Ting He,
- Abstract summary: This work aims at improving the energy efficiency of decentralized learning by optimizing the mixing matrix, which controls the communication demands during the learning process.
A solution with guaranteed performance is proposed for the special case of fully-connected base topology and a greedy algorithm is proposed for the general case.
Simulations based on real topology and dataset show that the proposed solution can lower the energy consumption at the busiest node by 54%-76% while maintaining the quality of the trained model.
- Score: 6.290202502226849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work aims at improving the energy efficiency of decentralized learning by optimizing the mixing matrix, which controls the communication demands during the learning process. Through rigorous analysis based on a state-of-the-art decentralized learning algorithm, the problem is formulated as a bi-level optimization, with the lower level solved by graph sparsification. A solution with guaranteed performance is proposed for the special case of fully-connected base topology and a greedy heuristic is proposed for the general case. Simulations based on real topology and dataset show that the proposed solution can lower the energy consumption at the busiest node by 54%-76% while maintaining the quality of the trained model.
Related papers
- Boosting Fairness and Robustness in Over-the-Air Federated Learning [3.2088888904556123]
Over-the-Air Computation is a beyond-5G communication strategy.
We propose an Over-the-Air federated learning algorithm that aims to provide fairness and robustness through minmax optimization.
arXiv Detail & Related papers (2024-03-07T12:03:04Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Reinforcement Learning for Battery Energy Storage Dispatch augmented
with Model-based Optimizer [0.0]
This paper proposes a novel approach to combine the physics-based models with learning-based algorithms to solve distribution-level OPF problems.
The effectiveness of the proposed approach is demonstrated using IEEE 34-bus and 123-bus distribution feeders with numerous distribution-level battery storage systems.
arXiv Detail & Related papers (2021-09-02T14:48:25Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
This paper is the first to study PFL for saddle point problems encompassing a broader range of optimization problems.
We propose new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly) convex-(strongly) concave saddle point problems.
Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.
arXiv Detail & Related papers (2021-06-14T10:36:25Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
We propose a learning-based framework, which unrolls decentralized optimization algorithms into graph neural networks (GNNs)
By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue.
Our convergence analysis reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent.
arXiv Detail & Related papers (2021-04-04T07:52:34Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Sparse Optimization for Green Edge AI Inference [28.048770388766716]
We present a joint inference task selection and downlink beamforming strategy to achieve energy-efficient edge AI inference.
By exploiting the inherent connections between the set of task selection and group sparsity transmit beamforming vector, we reformulate the optimization as a group sparse beamforming problem.
We establish the global convergence analysis and provide the ergodic worst-case convergence rate for this algorithm.
arXiv Detail & Related papers (2020-02-24T05:21:58Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [52.94011236627326]
We consider a decentralized learning problem where data points are distributed among computing nodes communicating over a directed graph.
As the model size gets large, decentralized learning faces a major bottleneck that is the communication load due to each node transmitting messages (model updates) to its neighbors.
We propose the quantized decentralized learning algorithm over directed graphs that is based on the push-sum algorithm in decentralized consensus optimization.
arXiv Detail & Related papers (2020-02-23T18:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.