Fair Sampling in Diffusion Models through Switching Mechanism
- URL: http://arxiv.org/abs/2401.03140v5
- Date: Thu, 03 Oct 2024 03:59:37 GMT
- Title: Fair Sampling in Diffusion Models through Switching Mechanism
- Authors: Yujin Choi, Jinseong Park, Hoki Kim, Jaewook Lee, Saerom Park,
- Abstract summary: We propose a fairness-aware sampling method called textitattribute switching mechanism for diffusion models.
We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects.
- Score: 5.560136885815622
- License:
- Abstract: Diffusion models have shown their effectiveness in generation tasks by well-approximating the underlying probability distribution. However, diffusion models are known to suffer from an amplified inherent bias from the training data in terms of fairness. While the sampling process of diffusion models can be controlled by conditional guidance, previous works have attempted to find empirical guidance to achieve quantitative fairness. To address this limitation, we propose a fairness-aware sampling method called \textit{attribute switching} mechanism for diffusion models. Without additional training, the proposed sampling can obfuscate sensitive attributes in generated data without relying on classifiers. We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects: (i) the generation of fair data and (ii) the preservation of the utility of the generated data.
Related papers
- Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model [22.39558434131574]
Existing data attribution methods for diffusion models typically quantify the contribution of a training sample.
We argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss.
We aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance.
arXiv Detail & Related papers (2024-10-24T10:58:17Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
We propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation.
Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods [27.014858633903867]
We present a training framework for feature disentanglement of Diffusion Models (FDiff)
We propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability.
arXiv Detail & Related papers (2023-02-28T07:43:00Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.