Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model
- URL: http://arxiv.org/abs/2410.18639v2
- Date: Fri, 25 Oct 2024 13:12:47 GMT
- Title: Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model
- Authors: Jinxu Lin, Linwei Tao, Minjing Dong, Chang Xu,
- Abstract summary: Existing data attribution methods for diffusion models typically quantify the contribution of a training sample.
We argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss.
We aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance.
- Score: 22.39558434131574
- License:
- Abstract: As diffusion models become increasingly popular, the misuse of copyrighted and private images has emerged as a major concern. One promising solution to mitigate this issue is identifying the contribution of specific training samples in generative models, a process known as data attribution. Existing data attribution methods for diffusion models typically quantify the contribution of a training sample by evaluating the change in diffusion loss when the sample is included or excluded from the training process. However, we argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss. Specifically, these approaches measure the divergence between predicted and ground truth distributions, which leads to an indirect comparison between the predicted distributions and cannot represent the variances between model behaviors. To address these issues, we aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance, which is achieved by Diffusion Attribution Score (DAS). Underpinned by rigorous theoretical analysis, we elucidate the effectiveness of DAS. Additionally, we explore strategies to accelerate DAS calculations, facilitating its application to large-scale diffusion models. Our extensive experiments across various datasets and diffusion models demonstrate that DAS significantly surpasses previous benchmarks in terms of the linear data-modelling score, establishing new state-of-the-art performance.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Intriguing Properties of Data Attribution on Diffusion Models [33.77847454043439]
Data attribution seeks to trace desired outputs back to training data.
Data attribution has become a module to properly assign for high-intuitive or copyrighted data.
arXiv Detail & Related papers (2023-11-01T13:00:46Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
arXiv Detail & Related papers (2023-10-08T19:02:46Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.