Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
- URL: http://arxiv.org/abs/2401.03302v3
- Date: Wed, 25 Sep 2024 10:45:52 GMT
- Title: Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
- Authors: Seyed Mohammad Hossein Hashemi, Leila Safari, Amirhossein Dadashzadeh Taromi,
- Abstract summary: This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations.
The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases.
This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.
- Score: 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.
Related papers
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Deep Learning models for benign and malign Ocular Tumor Growth
Estimation [3.1558405181807574]
Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data.
A strategy for the selection of a proper model is presented here.
arXiv Detail & Related papers (2021-07-09T05:40:25Z) - A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and
Overall Patient Survival Prediction [1.41414531071294]
The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation.
It is also essential to make an objective evaluation of various models based on the benchmark.
The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1.
arXiv Detail & Related papers (2021-01-26T07:22:52Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
We propose an innovative brain tumor abnormality detection algorithm.
The semi-supervised anomaly detection model is proposed in which only healthy (normal) brain images are trained.
arXiv Detail & Related papers (2020-07-09T12:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.