ClusterComm: Discrete Communication in Decentralized MARL using Internal
Representation Clustering
- URL: http://arxiv.org/abs/2401.03504v1
- Date: Sun, 7 Jan 2024 14:53:43 GMT
- Title: ClusterComm: Discrete Communication in Decentralized MARL using Internal
Representation Clustering
- Authors: Robert M\"uller, Hasan Turalic, Thomy Phan, Michael K\"olle, Jonas
N\"u{\ss}lein, Claudia Linnhoff-Popien
- Abstract summary: ClusterComm is a fully decentralized MARL framework where agents communicate discretely without a central control unit.
Mini-Batch-K-Means clustering on the last hidden layer's activations of an agent's policy network translates them into discrete messages.
- Score: 6.839032445412096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of Multi-Agent Reinforcement Learning (MARL), prevailing
approaches exhibit shortcomings in aligning with human learning, robustness,
and scalability. Addressing this, we introduce ClusterComm, a fully
decentralized MARL framework where agents communicate discretely without a
central control unit. ClusterComm utilizes Mini-Batch-K-Means clustering on the
last hidden layer's activations of an agent's policy network, translating them
into discrete messages. This approach outperforms no communication and competes
favorably with unbounded, continuous communication and hence poses a simple yet
effective strategy for enhancing collaborative task-solving in MARL.
Related papers
- Reward-Independent Messaging for Decentralized Multi-Agent Reinforcement Learning [7.872846260392537]
MARL-CPC is a framework that enables communication among fully decentralized, independent agents.<n>Unlike conventional methods that treat messages as part of the action space and assume cooperation, MARL-CPC links messages to state inference.<n> Benchmarks show thatBandit-CPC and IPPO-CPC outperform standard message-as-action approaches.
arXiv Detail & Related papers (2025-05-28T05:23:47Z) - Offline Multi-agent Reinforcement Learning via Score Decomposition [51.23590397383217]
offline cooperative multi-agent reinforcement learning (MARL) faces unique challenges due to distributional shifts.<n>This work is the first work to explicitly address the distributional gap between offline and online MARL.
arXiv Detail & Related papers (2025-05-09T11:42:31Z) - Context-aware Communication for Multi-agent Reinforcement Learning [6.109127175562235]
We develop a context-aware communication scheme for multi-agent reinforcement learning (MARL)
In the first stage, agents exchange coarse representations in a broadcast fashion, providing context for the second stage.
Following this, agents utilize attention mechanisms in the second stage to selectively generate messages personalized for the receivers.
To evaluate the effectiveness of CACOM, we integrate it with both actor-critic and value-based MARL algorithms.
arXiv Detail & Related papers (2023-12-25T03:33:08Z) - Multi-Agent Reinforcement Learning Based on Representational
Communication for Large-Scale Traffic Signal Control [13.844458247041711]
Traffic signal control (TSC) is a challenging problem within intelligent transportation systems.
We propose a communication-based MARL framework for large-scale TSC.
Our framework allows each agent to learn a communication policy that dictates "which" part of the message is sent "to whom"
arXiv Detail & Related papers (2023-10-03T21:06:51Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
We introduce hybrid execution in multi-agent reinforcement learning (MARL)
MARL is a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time.
We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations.
arXiv Detail & Related papers (2022-10-12T14:58:32Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
We propose a new method called MAMBA which utilizes Model-Based Reinforcement Learning (MBRL) to further leverage centralized training in cooperative environments.
We argue that communication between agents is enough to sustain a world model for each agent during execution phase while imaginary rollouts can be used for training, removing the necessity to interact with the environment.
arXiv Detail & Related papers (2022-05-25T08:35:00Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
arXiv Detail & Related papers (2022-05-21T14:11:33Z) - Cooperative Multi-Agent Actor-Critic for Privacy-Preserving Load
Scheduling in a Residential Microgrid [71.17179010567123]
We propose a privacy-preserving multi-agent actor-critic framework where the decentralized actors are trained with distributed critics.
The proposed framework can preserve the privacy of the households while simultaneously learn the multi-agent credit assignment mechanism implicitly.
arXiv Detail & Related papers (2021-10-06T14:05:26Z) - Communication Efficient Distributed Learning with Censored, Quantized,
and Generalized Group ADMM [52.12831959365598]
We propose a communication-efficiently decentralized machine learning framework that solves a consensus optimization problem defined over a network of inter-connected workers.
The proposed algorithm, Censored and Quantized Generalized GADMM, leverages the worker grouping and decentralized learning ideas of Group Alternating Direction Method of Multipliers (GADMM)
Numerical simulations corroborate that CQ-GGADMM exhibits higher communication efficiency in terms of the number of communication rounds and transmit energy consumption without compromising the accuracy and convergence speed.
arXiv Detail & Related papers (2020-09-14T14:18:19Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Multi-agent Reinforcement Learning for Networked System Control [6.89105475513757]
This paper considers multi-agent reinforcement learning (MARL) in networked system control.
We propose a new different communication protocol, called NeurComm, to reduce information loss and non-stationarity in NMARL.
NeurComm outperforms existing communication protocols in both learning efficiency and control performance.
arXiv Detail & Related papers (2020-04-03T02:21:07Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIX is a novel value-based method that can train decentralised policies in a centralised end-to-end fashion.
We propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2020-03-19T16:51:51Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.