論文の概要: {\alpha}-HMM: A Graphical Model for RNA Folding
- arxiv url: http://arxiv.org/abs/2401.03571v1
- Date: Sun, 7 Jan 2024 19:43:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 18:14:32.440308
- Title: {\alpha}-HMM: A Graphical Model for RNA Folding
- Title(参考訳): {\alpha}-HMM:RNAフォールディングのグラフィカルモデル
- Authors: Sixiang Zhang, Aaron J. Yang, and Liming Cai
- Abstract要約: RNA二次構造は新規な任意の順序隠れマルコフモデル(アルファ-HMM)でモデル化される
α-HMMは、プロセス内であるイベントが他のイベントにどのように影響するかを制限する柔軟性があり、擬似ノットを含むRNA二次構造を効率的に予測できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: RNA secondary structure is modeled with the novel arbitrary-order hidden
Markov model ({\alpha}-HMM). The {\alpha}-HMM extends over the traditional HMM
with capability to model stochastic events that may be in influenced by
historically distant ones, making it suitable to account for long-range
canonical base pairings between nucleotides, which constitute the RNA secondary
structure. Unlike previous heavy-weight extensions over HMM, the {\alpha}-HMM
has the flexibility to apply restrictions on how one event may influence
another in stochastic processes, enabling efficient prediction of RNA secondary
structure including pseudoknots.
- Abstract(参考訳): RNA二次構造は、新しい任意の順番隠れマルコフモデル({\alpha}-HMM)でモデル化される。
{\alpha}-HMMは従来のHMMを超えて、歴史的に離れた事象の影響を受けうる確率的な事象をモデル化し、RNA二次構造を構成するヌクレオチド間の長距離正準塩基対を考慮するのに適している。
HMM上の以前の重み付き拡張とは異なり、ある事象が確率過程において他の事象にどのように影響するかの制約を適用する柔軟性があり、擬似ノットを含むRNA二次構造を効率的に予測することができる。
関連論文リスト
- Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
DPLM-2は, 離散拡散タンパク質言語モデル(DPLM)を拡張し, 配列と構造の両方に適合する多モーダルタンパク質基盤モデルである。
DPLM-2は、配列と構造、およびその限界と条件の結合分布を学習する。
実験によりDPLM-2は高度に互換性のあるアミノ酸配列とそれに対応する3D構造を同時に生成できることが示された。
論文 参考訳(メタデータ) (2024-10-17T17:20:24Z) - CoPRA: Bridging Cross-domain Pretrained Sequence Models with Complex Structures for Protein-RNA Binding Affinity Prediction [23.1499716310298]
我々は,タンパク質-RNA結合親和性データセットPRA310を構築し,性能評価を行った。
我々は,(1)タンパク質-RNA結合親和性,(2)変異による結合親和性の変化を正確に予測できること,(3)データのスケーリングとモデルサイズによるメリットを広く分析し,検証する。
論文 参考訳(メタデータ) (2024-08-21T09:48:22Z) - Kirigami: large convolutional kernels improve deep learning-based RNA secondary structure prediction [0.0]
我々は,リボ核酸(RNA)分子の二次構造を予測するために,新しい完全畳み込みニューラルネットワーク(FCN)アーキテクチャを導入する。
深層学習を用いてヌクレオチド残基間の塩基対の確率を推定する。
広く採用されている1,305分子からなる標準化されたテストセットにおいて、本手法の精度は現在のSOTA(State-of-the-art)二次構造予測ソフトウェアよりも高い。
論文 参考訳(メタデータ) (2024-06-04T14:58:10Z) - Diffusion Language Models Are Versatile Protein Learners [75.98083311705182]
本稿では,タンパク質配列の強い生成および予測能力を示す多目的なタンパク質言語モデルである拡散タンパク質言語モデル(DPLM)を紹介する。
まず, 自己制御型離散拡散確率フレームワークを用いて, 進化的タンパク質配列からのスケーラブルDPLMの事前学習を行った。
プレトレーニング後、DPLMは非条件生成のための構造的に可塑性で新規で多様なタンパク質配列を生成する能力を示す。
論文 参考訳(メタデータ) (2024-02-28T18:57:56Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
RFoldは、与えられたシーケンスから最もよく一致するK-Rook解を予測する方法である。
RFoldは、最先端のアプローチよりも競争性能とおよそ8倍の推論効率を達成する。
論文 参考訳(メタデータ) (2022-12-02T16:34:56Z) - A QUBO model of the RNA folding problem optimized by variational hybrid
quantum annealing [0.0]
本稿では, 量子アニールと回路モデル量子コンピュータの両方に有効なRNA折り畳み問題のモデルを提案する。
この定式化を、既知のRNA構造に対して全てのパラメータを調整した後、現在のRNA折り畳みQUBOと比較する。
論文 参考訳(メタデータ) (2022-08-08T19:04:28Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Robust Classification using Hidden Markov Models and Mixtures of
Normalizing Flows [25.543231171094384]
我々は,隠れマルコフモデル(HMM)の状態遷移と,隠れたHMMの状態に対するニューラルネットワークに基づく確率分布を組み合わせた生成モデルを用いる。
音声認識への応用におけるNMM-HMM分類器の堅牢性の改善を検証する。
論文 参考訳(メタデータ) (2021-02-15T00:40:30Z) - Scaling Hidden Markov Language Models [118.55908381553056]
この研究は、HMMを言語モデリングデータセットに拡張するという課題を再考する。
本研究では,HMMを大規模状態空間に拡張する手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T18:51:55Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。