論文の概要: Kirigami: large convolutional kernels improve deep learning-based RNA secondary structure prediction
- arxiv url: http://arxiv.org/abs/2406.02381v2
- Date: Thu, 6 Jun 2024 14:04:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 19:44:18.514857
- Title: Kirigami: large convolutional kernels improve deep learning-based RNA secondary structure prediction
- Title(参考訳): キリガミ:大きな畳み込み核は深層学習に基づくRNA二次構造予測を改善する
- Authors: Marc Harary, Chengxin Zhang,
- Abstract要約: 我々は,リボ核酸(RNA)分子の二次構造を予測するために,新しい完全畳み込みニューラルネットワーク(FCN)アーキテクチャを導入する。
深層学習を用いてヌクレオチド残基間の塩基対の確率を推定する。
広く採用されている1,305分子からなる標準化されたテストセットにおいて、本手法の精度は現在のSOTA(State-of-the-art)二次構造予測ソフトウェアよりも高い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel fully convolutional neural network (FCN) architecture for predicting the secondary structure of ribonucleic acid (RNA) molecules. Interpreting RNA structures as weighted graphs, we employ deep learning to estimate the probability of base pairing between nucleotide residues. Unique to our model are its massive 11-pixel kernels, which we argue provide a distinct advantage for FCNs on the specialized domain of RNA secondary structures. On a widely adopted, standardized test set comprised of 1,305 molecules, the accuracy of our method exceeds that of current state-of-the-art (SOTA) secondary structure prediction software, achieving a Matthews Correlation Coefficient (MCC) over 11-40% higher than that of other leading methods on overall structures and 58-400% higher on pseudoknots specifically.
- Abstract(参考訳): 我々は,リボ核酸(RNA)分子の二次構造を予測するために,新しい完全畳み込みニューラルネットワーク(FCN)アーキテクチャを導入する。
RNA構造を重み付きグラフとして解釈し、ヌクレオチド残基間の塩基対の確率を推定するためにディープラーニングを用いる。
我々のモデルに共通するのは11ピクセルの巨大なカーネルであり、RNA二次構造の特殊領域におけるFCNの明確な優位性である。
広く採用されている1,305分子からなる標準化されたテストセットにおいて,本手法の精度は現在の最先端(SOTA)二次構造予測ソフトウェアよりも高く,マシューズ相関係数(MCC)が他の先行手法よりも11~40%高く,特に擬似結び目では58~400%高い値を示した。
関連論文リスト
- RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design [35.66059762160962]
本稿では3次元RNAバックボーン設計のための最初の生成モデルであるRNA-FrameFlowを紹介する。
我々は、剛体フレームと関連する損失関数の集合としてRNA構造を定式化する。
3次元RNAデータセットの多様性の欠如に対処するため、構造的クラスタリングと収穫増強によるトレーニングについて検討する。
論文 参考訳(メタデータ) (2024-06-19T21:06:44Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - A QUBO model of the RNA folding problem optimized by variational hybrid
quantum annealing [0.0]
本稿では, 量子アニールと回路モデル量子コンピュータの両方に有効なRNA折り畳み問題のモデルを提案する。
この定式化を、既知のRNA構造に対して全てのパラメータを調整した後、現在のRNA折り畳みQUBOと比較する。
論文 参考訳(メタデータ) (2022-08-08T19:04:28Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
E2Efold-3Dというエンド・ツー・エンドの深層学習手法を開発し,テクスタイド・ノボRNA構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - Neural representation and generation for RNA secondary structures [14.583976833366384]
我々の研究は、遺伝子マクロ分子の一種であるRNAの生成とターゲット設計に関するものである。
大規模で複雑な生物学的構造の設計は、専用のグラフベースの深層生成モデリング技術を刺激する。
本稿では,異なるRNA構造を結合して生成するフレキシブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-01T15:49:25Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
機械学習技術に基づくRNA二次構造予測手法の概要について概説する。
RNA二次構造予測の分野で現在進行中の課題と今後の動向についても論じる。
論文 参考訳(メタデータ) (2020-09-01T03:17:15Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。