An Exploratory Study on Automatic Identification of Assumptions in the Development of Deep Learning Frameworks
- URL: http://arxiv.org/abs/2401.03653v6
- Date: Sun, 06 Oct 2024 08:46:52 GMT
- Title: An Exploratory Study on Automatic Identification of Assumptions in the Development of Deep Learning Frameworks
- Authors: Chen Yang, Peng Liang, Zinan Ma,
- Abstract summary: Existing approaches and tools for assumption management usually depend on manual identification of assumptions.
This study intends to evaluate different classification models for the purpose of identification with respect to assumptions from the point of view of developers and users.
- Score: 3.457512613793633
- License:
- Abstract: Stakeholders constantly make assumptions in the development of deep learning (DL) frameworks. These assumptions are related to various types of software artifacts (e.g., requirements, design decisions, and technical debt) and can turn out to be invalid, leading to system failures. Existing approaches and tools for assumption management usually depend on manual identification of assumptions. However, assumptions are scattered in various sources (e.g., code comments, commits, pull requests, and issues) of DL framework development, and manually identifying assumptions has high costs. This study intends to evaluate different classification models for the purpose of identification with respect to assumptions from the point of view of developers and users in the context of DL framework projects (i.e., issues, pull requests, and commits) on GitHub. First, we constructed a new and largest dataset (i.e., the AssuEval dataset) of assumptions collected from the TensorFlow and Keras repositories on GitHub. Then we explored the performance of seven non-transformers based models (e.g., Support Vector Machine, Classification and Regression Trees), the ALBERT model, and three decoder-only models (i.e., ChatGPT, Claude, and Gemini) for identifying assumptions on the AssuEval dataset. The study results show that ALBERT achieves the best performance (f1-score: 0.9584) for identifying assumptions on the AssuEval dataset, which is much better than the other models (the 2nd best f1-score is 0.8858, achieved by the Claude 3.5 Sonnet model). Though ChatGPT, Claude, and Gemini are popular models, we do not recommend using them to identify assumptions in DL framework development because of their low performance. Fine-tuning ChatGPT, Claude, Gemini, or other language models (e.g., Llama3, Falcon, and BLOOM) specifically for assumptions might improve their performance for assumption identification.
Related papers
- SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models [88.29990536278167]
We introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions.
Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities.
arXiv Detail & Related papers (2024-12-16T09:47:43Z) - Explore Theory of Mind: Program-guided adversarial data generation for theory of mind reasoning [88.68573198200698]
We introduce ExploreToM, the first framework to allow large-scale generation of diverse and challenging theory of mind data.
Our approach leverages an A* search over a custom domain-specific language to produce complex story structures and novel, diverse, yet plausible scenarios.
Our evaluation reveals that state-of-the-art LLMs, such as Llama-3.1-70B and GPT-4o, show accuracies as low as 0% and 9% on ExploreToM-generated data.
arXiv Detail & Related papers (2024-12-12T21:29:00Z) - How Certain are Uncertainty Estimates? Three Novel Earth Observation Datasets for Benchmarking Uncertainty Quantification in Machine Learning [15.306338199978269]
Uncertainty quantification (UQ) is essential for assessing the reliability of Earth observation (EO) products.
Various UQ methods do exist for machine learning models, their performance on EO datasets remains largely unevaluated.
This article introduces three benchmark datasets specifically designed for UQ in EO machine learning models.
arXiv Detail & Related papers (2024-12-09T12:50:27Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - A Comprehensive Benchmark of Machine and Deep Learning Across Diverse Tabular Datasets [0.6144680854063939]
We introduce a benchmark aimed at better characterizing types of datasets where Deep Learning models excel.
We evaluate 111 datasets with 20 different models, including both regression and classification tasks.
Building on the results of this benchmark, we train a model that predicts scenarios where DL models outperform alternative methods with 86.1% accuracy.
arXiv Detail & Related papers (2024-08-27T06:58:52Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical Reasoning [25.496627355906966]
We develop three new logical reasoning datasets named "ReClor-plus", "LogiQA-plus" and "LogiQAv2-plus"
Experiments show that these simple augmentations greatly hinder the models' performance.
Applying logic-driven data augmentation for fine-tuning and prompting can enhance generalisation in both discriminative and generative models.
arXiv Detail & Related papers (2023-10-13T22:29:15Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
We surveyed and reproduced 9 state-of-the-art deep learning models on 2 widely used vulnerability detection datasets.
We investigated model capabilities, training data, and model interpretation.
Our findings can help better understand model results, provide guidance on preparing training data, and improve the robustness of the models.
arXiv Detail & Related papers (2022-12-15T19:49:34Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.