Primitive Geometry Segment Pre-training for 3D Medical Image
Segmentation
- URL: http://arxiv.org/abs/2401.03665v1
- Date: Mon, 8 Jan 2024 04:37:35 GMT
- Title: Primitive Geometry Segment Pre-training for 3D Medical Image
Segmentation
- Authors: Ryu Tadokoro, Ryosuke Yamada, Kodai Nakashima, Ryo Nakamura, Hirokatsu
Kataoka
- Abstract summary: We present the Primitive Geometry Segment Pre-training (PrimGeoSeg) method to enable the learning of 3D semantic features.
PrimGeoSeg performs more accurate and efficient 3D medical image segmentation without manual data collection and annotation.
- Score: 12.251689154843342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The construction of 3D medical image datasets presents several issues,
including requiring significant financial costs in data collection and
specialized expertise for annotation, as well as strict privacy concerns for
patient confidentiality compared to natural image datasets. Therefore, it has
become a pressing issue in 3D medical image segmentation to enable
data-efficient learning with limited 3D medical data and supervision. A
promising approach is pre-training, but improving its performance in 3D medical
image segmentation is difficult due to the small size of existing 3D medical
image datasets. We thus present the Primitive Geometry Segment Pre-training
(PrimGeoSeg) method to enable the learning of 3D semantic features by
pre-training segmentation tasks using only primitive geometric objects for 3D
medical image segmentation. PrimGeoSeg performs more accurate and efficient 3D
medical image segmentation without manual data collection and annotation.
Further, experimental results show that PrimGeoSeg on SwinUNETR improves
performance over learning from scratch on BTCV, MSD (Task06), and BraTS
datasets by 3.7%, 4.4%, and 0.3%, respectively. Remarkably, the performance was
equal to or better than state-of-the-art self-supervised learning despite the
equal number of pre-training data. From experimental results, we conclude that
effective pre-training can be achieved by looking at primitive geometric
objects only. Code and dataset are available at
https://github.com/SUPER-TADORY/PrimGeoSeg.
Related papers
- Self Pre-training with Topology- and Spatiality-aware Masked Autoencoders for 3D Medical Image Segmentation [16.753957522664713]
Masked Autoencoders (MAEs) have been shown to be effective in pre-training Vision Transformers (ViTs) for natural and medical image analysis problems.
Existing MAE pre-training methods, which were specifically developed with the ViT architecture, lack the ability to capture geometric shape and spatial information.
We propose a novel extension of known MAEs for self pre-training (i.e., models pre-trained on the same target dataset) for 3D medical image segmentation.
arXiv Detail & Related papers (2024-06-15T06:15:17Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
We propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt.
We evaluate our model on two public datasets for colon and pancreas tumor segmentations.
arXiv Detail & Related papers (2023-10-30T16:49:03Z) - OneSeg: Self-learning and One-shot Learning based Single-slice
Annotation for 3D Medical Image Segmentation [36.50258132379276]
We propose a self-learning and one-shot learning based framework for 3D medical image segmentation by annotating only one slice of each 3D image.
Our approach takes two steps: (1) self-learning of a reconstruction network to learn semantic correspondence among 2D slices within 3D images, and (2) representative selection of single slices for one-shot manual annotation.
Our new framework achieves comparable performance with less than 1% annotated data compared with fully supervised methods.
arXiv Detail & Related papers (2023-09-24T15:35:58Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - PCDAL: A Perturbation Consistency-Driven Active Learning Approach for
Medical Image Segmentation and Classification [12.560273908522714]
Supervised learning deeply relies on large-scale annotated data, which is expensive, time-consuming, and impractical to acquire in medical imaging applications.
Active Learning (AL) methods have been widely applied in natural image classification tasks to reduce annotation costs.
We propose an AL-based method that can be simultaneously applied to 2D medical image classification, segmentation, and 3D medical image segmentation tasks.
arXiv Detail & Related papers (2023-06-29T13:11:46Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
This paper revisits an innovative yet simple fully-supervised 3D network pre-training framework.
With a redesigned 3D network architecture, reformulated natural images are used to address the problem of data scarcity.
Comprehensive experiments on four benchmark datasets demonstrate that the proposed pre-trained models can effectively accelerate convergence.
arXiv Detail & Related papers (2022-01-05T03:11:21Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.