FMA-Net: Flow-Guided Dynamic Filtering and Iterative Feature Refinement with Multi-Attention for Joint Video Super-Resolution and Deblurring
- URL: http://arxiv.org/abs/2401.03707v2
- Date: Thu, 28 Mar 2024 00:43:21 GMT
- Title: FMA-Net: Flow-Guided Dynamic Filtering and Iterative Feature Refinement with Multi-Attention for Joint Video Super-Resolution and Deblurring
- Authors: Geunhyuk Youk, Jihyong Oh, Munchurl Kim,
- Abstract summary: We present a joint learning scheme of video super-resolution and deblurring, called VSRDB, to restore clean high-resolution (HR) videos from blurry low-resolution (LR) ones.
We propose a novel flow-guided dynamic filtering (FGDF) and iterative feature refinement with multi-attention (FRMA) framework.
- Score: 28.626224230377108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a joint learning scheme of video super-resolution and deblurring, called VSRDB, to restore clean high-resolution (HR) videos from blurry low-resolution (LR) ones. This joint restoration problem has drawn much less attention compared to single restoration problems. In this paper, we propose a novel flow-guided dynamic filtering (FGDF) and iterative feature refinement with multi-attention (FRMA), which constitutes our VSRDB framework, denoted as FMA-Net. Specifically, our proposed FGDF enables precise estimation of both spatio-temporally-variant degradation and restoration kernels that are aware of motion trajectories through sophisticated motion representation learning. Compared to conventional dynamic filtering, the FGDF enables the FMA-Net to effectively handle large motions into the VSRDB. Additionally, the stacked FRMA blocks trained with our novel temporal anchor (TA) loss, which temporally anchors and sharpens features, refine features in a course-to-fine manner through iterative updates. Extensive experiments demonstrate the superiority of the proposed FMA-Net over state-of-the-art methods in terms of both quantitative and qualitative quality. Codes and pre-trained models are available at: https://kaist-viclab.github.io/fmanet-site
Related papers
- Joint Flow And Feature Refinement Using Attention For Video Restoration [0.3811713174618588]
We propose a novel video restoration framework named Joint Flow and Feature Refinement using Attention (JFFRA)<n>Our method demonstrates a remarkable performance improvement of up to 1.62 dB compared to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-22T09:18:51Z) - Temporal-Consistent Video Restoration with Pre-trained Diffusion Models [51.47188802535954]
Video restoration (VR) aims to recover high-quality videos from degraded ones.
Recent zero-shot VR methods using pre-trained diffusion models (DMs) suffer from approximation errors during reverse diffusion and insufficient temporal consistency.
We present a novel a Posterior Maximum (MAP) framework that directly parameterizes video frames in the seed space of DMs, eliminating approximation errors.
arXiv Detail & Related papers (2025-03-19T03:41:56Z) - Improving Video Generation with Human Feedback [81.48120703718774]
Video generation has achieved significant advances, but issues like unsmooth motion and misalignment between videos and prompts persist.
We develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model.
We introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy.
arXiv Detail & Related papers (2025-01-23T18:55:41Z) - DGTR: Distributed Gaussian Turbo-Reconstruction for Sparse-View Vast Scenes [81.56206845824572]
Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction.
Few-shot methods often struggle with poor reconstruction quality in vast environments.
This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes.
arXiv Detail & Related papers (2024-11-19T07:51:44Z) - Fast Unsupervised Tensor Restoration via Low-rank Deconvolution [0.09208007322096533]
Low-rank Deconvolution (LRD) has appeared as a new multi-dimensional representation model that enjoys important efficiency and flexibility properties.
We ask ourselves if this analytical model can compete against Deep Learning (DL) frameworks like Deep Image Prior (DIP) or Blind-Spot Networks (BSN)
arXiv Detail & Related papers (2024-06-15T16:04:49Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - Collaborative Feedback Discriminative Propagation for Video Super-Resolution [66.61201445650323]
Key success of video super-resolution (VSR) methods stems mainly from exploring spatial and temporal information.
Inaccurate alignment usually leads to aligned features with significant artifacts.
propagation modules only propagate the same timestep features forward or backward.
arXiv Detail & Related papers (2024-04-06T22:08:20Z) - FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models [16.940023904740585]
We introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models.
Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality.
arXiv Detail & Related papers (2023-12-06T14:24:26Z) - Motion-Guided Latent Diffusion for Temporally Consistent Real-world Video Super-resolution [15.197746480157651]
We propose an effective real-world VSR algorithm by leveraging the strength of pre-trained latent diffusion models.
We exploit the temporal dynamics in LR videos to guide the diffusion process by optimizing the latent sampling path with a motion-guided loss.
The proposed motion-guided latent diffusion based VSR algorithm achieves significantly better perceptual quality than state-of-the-arts on real-world VSR benchmark datasets.
arXiv Detail & Related papers (2023-12-01T14:40:07Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Panini-Net: GAN Prior Based Degradation-Aware Feature Interpolation for
Face Restoration [4.244692655670362]
Panini-Net is a degradation-aware feature network for face restoration.
It learns the abstract representations to distinguish various degradations.
It achieves state-of-the-art performance for multi-degradation face restoration and face super-resolution.
arXiv Detail & Related papers (2022-03-16T07:41:07Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.