Collaborative Feedback Discriminative Propagation for Video Super-Resolution
- URL: http://arxiv.org/abs/2404.04745v1
- Date: Sat, 6 Apr 2024 22:08:20 GMT
- Title: Collaborative Feedback Discriminative Propagation for Video Super-Resolution
- Authors: Hao Li, Xiang Chen, Jiangxin Dong, Jinhui Tang, Jinshan Pan,
- Abstract summary: Key success of video super-resolution (VSR) methods stems mainly from exploring spatial and temporal information.
Inaccurate alignment usually leads to aligned features with significant artifacts.
propagation modules only propagate the same timestep features forward or backward.
- Score: 66.61201445650323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key success of existing video super-resolution (VSR) methods stems mainly from exploring spatial and temporal information, which is usually achieved by a recurrent propagation module with an alignment module. However, inaccurate alignment usually leads to aligned features with significant artifacts, which will be accumulated during propagation and thus affect video restoration. Moreover, propagation modules only propagate the same timestep features forward or backward that may fail in case of complex motion or occlusion, limiting their performance for high-quality frame restoration. To address these issues, we propose a collaborative feedback discriminative (CFD) method to correct inaccurate aligned features and model long -range spatial and temporal information for better video reconstruction. In detail, we develop a discriminative alignment correction (DAC) method to adaptively explore information and reduce the influences of the artifacts caused by inaccurate alignment. Then, we propose a collaborative feedback propagation (CFP) module that employs feedback and gating mechanisms to better explore spatial and temporal information of different timestep features from forward and backward propagation simultaneously. Finally, we embed the proposed DAC and CFP into commonly used VSR networks to verify the effectiveness of our method. Quantitative and qualitative experiments on several benchmarks demonstrate that our method can improve the performance of existing VSR models while maintaining a lower model complexity. The source code and pre-trained models will be available at \url{https://github.com/House-Leo/CFDVSR}.
Related papers
- Cascaded Temporal Updating Network for Efficient Video Super-Resolution [47.63267159007611]
Key components in recurrent-based VSR networks significantly impact model efficiency.
We propose a cascaded temporal updating network (CTUN) for efficient VSR.
CTUN achieves a favorable trade-off between efficiency and performance compared to existing methods.
arXiv Detail & Related papers (2024-08-26T12:59:32Z) - Deformable Feature Alignment and Refinement for Moving Infrared Dim-small Target Detection [17.765101100010224]
We propose a Deformable Feature Alignment and Refinement (DFAR) method based on deformable convolution to explicitly use motion context in both the training and inference stages.
The proposed DFAR method achieves the state-of-the-art performance on two benchmark datasets including DAUB and IRDST.
arXiv Detail & Related papers (2024-07-10T00:42:25Z) - Spatial-Temporal Transformer based Video Compression Framework [44.723459144708286]
We propose a novel Spatial-Temporal Transformer based Video Compression (STT-VC) framework.
It contains a Relaxed Deformable Transformer (RDT) with Uformer based offsets estimation for motion estimation and compensation, a Multi-Granularity Prediction (MGP) module based on multi-reference frames for prediction refinement, and a Spatial Feature Distribution prior based Transformer (SFD-T) for efficient temporal-spatial joint residual compression.
Experimental results demonstrate that our method achieves the best result with 13.5% BD-Rate saving over VTM.
arXiv Detail & Related papers (2023-09-21T09:23:13Z) - Local-Global Temporal Difference Learning for Satellite Video
Super-Resolution [55.69322525367221]
We propose to exploit the well-defined temporal difference for efficient and effective temporal compensation.
To fully utilize the local and global temporal information within frames, we systematically modeled the short-term and long-term temporal discrepancies.
Rigorous objective and subjective evaluations conducted across five mainstream video satellites demonstrate that our method performs favorably against state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-10T07:04:40Z) - Boosting Video Super Resolution with Patch-Based Temporal Redundancy
Optimization [46.833568886576074]
We discuss the influence of the temporal redundancy in the patches with stationary objects and background.
We develop two simple yet effective plug and play methods to improve the performance of existing local and non-local propagation-based VSR algorithms.
arXiv Detail & Related papers (2022-07-18T15:11:18Z) - Look Back and Forth: Video Super-Resolution with Explicit Temporal
Difference Modeling [105.69197687940505]
We propose to explore the role of explicit temporal difference modeling in both LR and HR space.
To further enhance the super-resolution result, not only spatial residual features are extracted, but the difference between consecutive frames in high-frequency domain is also computed.
arXiv Detail & Related papers (2022-04-14T17:07:33Z) - Revisiting Temporal Alignment for Video Restoration [39.05100686559188]
Long-range temporal alignment is critical yet challenging for video restoration tasks.
We present a novel, generic iterative alignment module which employs a gradual refinement scheme for sub-alignments.
Our model achieves state-of-the-art performance on multiple benchmarks across a range of video restoration tasks.
arXiv Detail & Related papers (2021-11-30T11:08:52Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
arXiv Detail & Related papers (2021-10-13T15:21:30Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.