TSI: A Multi-View Representation Learning Approach for Time Series Forecasting
- URL: http://arxiv.org/abs/2409.19871v1
- Date: Mon, 30 Sep 2024 02:11:57 GMT
- Title: TSI: A Multi-View Representation Learning Approach for Time Series Forecasting
- Authors: Wentao Gao, Ziqi Xu, Jiuyong Li, Lin Liu, Jixue Liu, Thuc Duy Le, Debo Cheng, Yanchang Zhao, Yun Chen,
- Abstract summary: This study introduces a novel multi-view approach for time series forecasting.
It integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation.
This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships.
- Score: 29.05140751690699
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the growing demand for long sequence time-series forecasting in real-world applications, such as electricity consumption planning, the significance of time series forecasting becomes increasingly crucial across various domains. This is highlighted by recent advancements in representation learning within the field. This study introduces a novel multi-view approach for time series forecasting that innovatively integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation. Recognizing the limitations of existing methods in representing complex and high-dimensional time series data, this research addresses the challenge by combining TS (trend and seasonality) and ICA (independent components) perspectives. This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships. The efficacy of TSI model is demonstrated through comprehensive testing on various benchmark datasets, where it shows superior performance over current state-of-the-art models, particularly in multivariate forecasting. This method not only enhances the accuracy of forecasting but also contributes significantly to the field by providing a more in-depth understanding of time series data. The research which uses ICA for a view lays the groundwork for further exploration and methodological advancements in time series forecasting, opening new avenues for research and practical applications.
Related papers
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
Time series forecasting has received wide interest from existing research due to its broad applications inherent challenging.
This paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation.
By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable.
arXiv Detail & Related papers (2023-07-13T13:16:01Z) - A Survey on Deep Learning based Time Series Analysis with Frequency
Transformation [74.3919960186696]
Frequency transformation (FT) has been increasingly incorporated into deep learning models to enhance state-of-the-art accuracy and efficiency in time series analysis.
Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT.
We present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT.
arXiv Detail & Related papers (2023-02-04T14:33:07Z) - Temporal Saliency Detection Towards Explainable Transformer-based
Timeseries Forecasting [3.046315755726937]
This paper introduces Temporal Saliency Detection (TSD), an effective approach that builds upon the attention mechanism and applies it to multi-horizon time series prediction.
The TSD approach facilitates the multiresolution analysis of saliency patterns by condensing multi-heads, thereby progressively enhancing the forecasting of complex time series data.
arXiv Detail & Related papers (2022-12-15T12:47:59Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty.
We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.
arXiv Detail & Related papers (2022-03-09T17:53:47Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.