論文の概要: SoK: Facial Deepfake Detectors
- arxiv url: http://arxiv.org/abs/2401.04364v2
- Date: Tue, 25 Jun 2024 09:02:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 20:40:18.240628
- Title: SoK: Facial Deepfake Detectors
- Title(参考訳): SoK:顔のディープフェイク検出装置
- Authors: Binh M. Le, Jiwon Kim, Shahroz Tariq, Kristen Moore, Alsharif Abuadbba, Simon S. Woo,
- Abstract要約: ディープフェイクは急速に社会への深刻な脅威として現れてきた。
既存の検出器の多くは、検証のためにラボで生成されたデータセットに大きく依存している。
本稿では、最新の最先端のディープフェイク検出器をレビューし、いくつかの臨界基準に対して評価する。
- 参考スコア(独自算出の注目度): 32.31180075214162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfakes have rapidly emerged as a profound and serious threat to society, primarily due to their ease of creation and dissemination. This situation has triggered an accelerated development of deepfake detection technologies. However, many existing detectors rely heavily on lab-generated datasets for validation, which may not effectively prepare them for novel, emerging, and real-world deepfake techniques. In this paper, we conduct an extensive and comprehensive review and analysis of the latest state-of-the-art deepfake detectors, evaluating them against several critical criteria. These criteria facilitate the categorization of these detectors into 4 high-level groups and 13 fine-grained sub-groups, all aligned with a unified standard conceptual framework. This classification and framework offer deep and practical insights into the factors that affect detector efficacy. We assess the generalizability of 16 leading detectors across various standard attack scenarios, including black-box, white-box, and gray-box settings. Our systematized analysis and experimentation lay the groundwork for a deeper understanding of deepfake detectors and their generalizability, paving the way for future research focused on creating detectors adept at countering various attack scenarios. Additionally, this work offers insights for developing more proactive defenses against deepfakes.
- Abstract(参考訳): ディープフェイクは、創造と普及の容易さから、社会に深刻な脅威として急速に現れてきた。
この状況は、ディープフェイク検出技術の急速な発展を引き起こした。
しかし、既存の検出器の多くは、実験室が生成したデータセットの検証に大きく依存しているため、新しい、新しい、そして現実世界のディープフェイク技術を効果的に準備することができないかもしれない。
本稿では,最新の最先端ディープフェイク検出器の広域的・包括的レビューと解析を行い,いくつかの臨界基準から評価する。
これらの基準は、これらの検出器を4つの高レベル群と13のきめ細かい部分群に分類し、全て統一された標準概念の枠組みと整合する。
この分類と枠組みは、検出器の有効性に影響を与える要因について、より深く実践的な洞察を提供する。
我々は,ブラックボックス,ホワイトボックス,グレーボックスの設定など,様々な標準的な攻撃シナリオにおける16個の主要検出器の一般化可能性を評価する。
我々の体系化された分析と実験は、ディープフェイク検出器とその一般化可能性の深い理解の土台となり、様々な攻撃シナリオに対応可能な検出器を作成することに焦点を当てた将来の研究の道を開いた。
さらに、この研究はディープフェイクに対するより積極的な防御を開発するための洞察を提供する。
関連論文リスト
- DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
既存の研究は、ある特定のデータセットで検出器をトレーニングし、他の一般的なディープフェイクデータセットでテストすることで、トップノーチ検出アルゴリズムとモデルを識別する。
しかし、これらの「勝者」は現実の世界に潜む無数の現実的で多様なディープフェイクに取り組むために真に応用できるのだろうか?
我々は,40の異なるディープフェイク技術からなるDF40という,高度に多様なディープフェイク検出データセットを構築した。
論文 参考訳(メタデータ) (2024-06-19T12:35:02Z) - Real is not True: Backdoor Attacks Against Deepfake Detection [9.572726483706846]
本稿では,Bad-Deepfake(Bad-Deepfake)と命名された先駆的パラダイムを導入する。
我々のアプローチはトレーニングデータのサブセットを戦略的に操作することで、トレーニングされたモデルの運用特性に対する不均等な影響を軽減します。
論文 参考訳(メタデータ) (2024-03-11T10:57:14Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
本研究は,ディープフェイク検出器の一般化性に関する最初の実証的研究である。
本研究では,6つのディープフェイクデータセット,5つのディープフェイク画像検出手法,および2つのモデル拡張アプローチを用いた。
検出器は, 合成法に特有の不要な特性を学習し, 識別的特徴の抽出に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-08-08T10:30:34Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
ディープフェイク検出の分野で見落とされがちな課題は、標準化され、統一され、包括的なベンチマークがないことである。
DeepfakeBenchと呼ばれる,3つの重要なコントリビューションを提供するディープフェイク検出のための,最初の包括的なベンチマークを提示する。
DeepfakeBenchには15の最先端検出方法、9CLデータセット、一連のDeepfake検出評価プロトコルと分析ツール、包括的な評価ツールが含まれている。
論文 参考訳(メタデータ) (2023-07-04T01:34:41Z) - Why Do Facial Deepfake Detectors Fail? [9.60306700003662]
近年のディープフェイク技術の発展により、ビデオ、画像、オーディオなどの非常に現実的な偽メディアの作成が可能になった。
これらの資料は、偽造、偽情報、さらには国家安全保障に対する脅威など、人間の認証に重大な課題を提起している。
いくつかのディープフェイク検出アルゴリズムが提案されており、ディープフェイク作成者とディープフェイク検出装置との間の武器競争が進行中である。
論文 参考訳(メタデータ) (2023-02-25T20:54:02Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
本稿では, 既知の生成モデルと未知の生成モデルの両方から, 新たなディープフェイク集合に対する連続的なディープフェイク検出ベンチマーク(CDDB)を提案する。
本研究では,連続的なディープラーニング検出問題に対して,連続的な視覚認識で一般的に使用される多クラス漸進学習手法を適応するために,複数のアプローチを利用する。
論文 参考訳(メタデータ) (2022-05-11T13:07:19Z) - Impact of Benign Modifications on Discriminative Performance of Deepfake
Detectors [11.881119750753648]
このような内容を特定するために、近年、多くのディープフェイク検出器が提案されている。
ディープフェイクは、エンターテイメントのような忠実なアプリケーションと、画像やビデオの偽造のような悪意ある意図された操作の両方で人気がある。
本稿では,より現実的な状況下でのディープフェイク検出器の性能を評価するための,より厳密で体系的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-14T22:50:39Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
既存のノベルティ検出器は敵の例に感受性があることが示される。
本稿では, 新規性検知器の潜伏空間を制御し, 敵に対する堅牢性を向上する防衛戦略を提案する。
論文 参考訳(メタデータ) (2021-08-25T10:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。