Probabilistic emotion and sentiment modelling of patient-reported
experiences
- URL: http://arxiv.org/abs/2401.04367v1
- Date: Tue, 9 Jan 2024 05:39:20 GMT
- Title: Probabilistic emotion and sentiment modelling of patient-reported
experiences
- Authors: Curtis Murray, Lewis Mitchell, Jonathan Tuke, Mark Mackay
- Abstract summary: This study introduces a novel methodology for modelling patient emotions from online patient experience narratives.
We employ metadata network topic modelling to analyse patient-reported experiences from Care Opinion.
We develop a probabilistic, context-specific emotion recommender system capable of predicting both multilabel emotions and binary sentiments.
- Score: 0.04096453902709291
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study introduces a novel methodology for modelling patient emotions from
online patient experience narratives. We employed metadata network topic
modelling to analyse patient-reported experiences from Care Opinion, revealing
key emotional themes linked to patient-caregiver interactions and clinical
outcomes. We develop a probabilistic, context-specific emotion recommender
system capable of predicting both multilabel emotions and binary sentiments
using a naive Bayes classifier using contextually meaningful topics as
predictors. The superior performance of our predicted emotions under this model
compared to baseline models was assessed using the information retrieval
metrics nDCG and Q-measure, and our predicted sentiments achieved an F1 score
of 0.921, significantly outperforming standard sentiment lexicons. This method
offers a transparent, cost-effective way to understand patient feedback,
enhancing traditional collection methods and informing individualised patient
care. Our findings are accessible via an R package and interactive dashboard,
providing valuable tools for healthcare researchers and practitioners.
Related papers
- A Comparative Study on Patient Language across Therapeutic Domains for Effective Patient Voice Classification in Online Health Discussions [0.48124799513933847]
In this study, we analyse the importance of linguistic characteristics in accurately classifying patient voices.
We fine-tuned a pre-trained Language Model on the combined datasets with similar linguistic patterns, resulting in a highly accurate automatic patient voice classification.
Being the pioneering study on the topic, our focus on extracting authentic patient experiences from social media stands as a crucial step towards advancing healthcare standards.
arXiv Detail & Related papers (2024-07-23T15:51:46Z) - A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis [3.5280004326441365]
PatWay-Net is an ML framework designed for interpretable predictions of admission to the intensive care unit for patients with sepsis.
We propose a novel type of recurrent neural network and combine it with multi-layer perceptrons to process the patient pathways.
We demonstrate its utility through a comprehensive dashboard that visualizes patient health trajectories, predictive outcomes, and associated risks.
arXiv Detail & Related papers (2024-05-21T20:31:42Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - MedNgage: A Dataset for Understanding Engagement in Patient-Nurse
Conversations [4.847266237348932]
Patients who effectively manage their symptoms often demonstrate higher levels of engagement in conversations and interventions with healthcare practitioners.
It is crucial for AI systems to understand the engagement in natural conversations between patients and practitioners to better contribute toward patient care.
We present a novel dataset (MedNgage) which consists of patient-nurse conversations about cancer symptom management.
arXiv Detail & Related papers (2023-05-31T16:06:07Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
In clinical practice such models must not only be accurate, but provide doctors with interpretable and helpful results.
We introduce ProtoPatient, a novel method based on prototypical networks and label-wise attention.
We evaluate the model on two publicly available clinical datasets and show that it outperforms existing baselines.
arXiv Detail & Related papers (2022-10-16T10:12:07Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
We study differences in model performance and explainability when trained for all patients and one patient at a time.
The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness.
arXiv Detail & Related papers (2021-12-20T10:51:04Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.