論文の概要: Machine unlearning through fine-grained model parameters perturbation
- arxiv url: http://arxiv.org/abs/2401.04385v2
- Date: Fri, 23 Feb 2024 10:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 17:26:32.417828
- Title: Machine unlearning through fine-grained model parameters perturbation
- Title(参考訳): きめ細かいモデルパラメータ摂動による機械学習
- Authors: Zhiwei Zuo, Zhuo Tang, Kenli Li, Anwitaman Datta
- Abstract要約: そこで本研究では,不エクササイズマシンの非学習戦略であるTop-KパラメータとRandom-kパラメータの微粒化を提案する。
また,機械学習の有効性を評価する上での課題にも取り組む。
- 参考スコア(独自算出の注目度): 29.1171391789129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning techniques, which involve retracting data records and
reducing influence of said data on trained models, help with the user privacy
protection objective but incur significant computational costs. Weight
perturbation-based unlearning is a general approach, but it typically involves
globally modifying the parameters. We propose fine-grained Top-K and Random-k
parameters perturbed inexact machine unlearning strategies that address the
privacy needs while keeping the computational costs tractable.
In order to demonstrate the efficacy of our strategies we also tackle the
challenge of evaluating the effectiveness of machine unlearning by considering
the model's generalization performance across both unlearning and remaining
data. To better assess the unlearning effect and model generalization, we
propose novel metrics, namely, the forgetting rate and memory retention rate.
However, for inexact machine unlearning, current metrics are inadequate in
quantifying the degree of forgetting that occurs after unlearning strategies
are applied. To address this, we introduce SPD-GAN, which subtly perturbs the
distribution of data targeted for unlearning. Then, we evaluate the degree of
unlearning by measuring the performance difference of the models on the
perturbed unlearning data before and after the unlearning process. By
implementing these innovative techniques and metrics, we achieve
computationally efficacious privacy protection in machine learning applications
without significant sacrifice of model performance. Furthermore, this approach
provides a novel method for evaluating the degree of unlearning.
- Abstract(参考訳): データレコードの抽出とトレーニングされたモデルへの影響の低減を含む機械学習技術は、ユーザのプライバシ保護の目標に役立ちながら、計算コストを大幅に削減する。
重度摂動に基づくアンラーニングは一般的なアプローチであるが、通常はグローバルなパラメータの変更を伴う。
我々は,計算コストを扱いやすく保ちながら,プライバシニーズに対処し得る,不規則なマシンアンラーニング戦略を乱用した,きめ細かいトップkパラメータとランダムkパラメータを提案する。
また,本手法の有効性を実証するために,学習データと学習データの両方にまたがるモデルの一般化性能を考慮し,機械学習の有効性を評価する。
非学習効果とモデル一般化をよりよく評価するために,記憶保持率と記憶保持率という新しい指標を提案する。
しかし、不正確な機械学習では、未学習戦略の適用後に発生する忘れの程度を定量化するには、現在のメトリクスが不十分である。
そこで本研究では,学習対象データの分布を微妙に乱すSPD-GANを提案する。
そして、未学習プロセスの前後における混乱した未学習データのモデルの性能差を計測し、未学習の程度を評価する。
これらの革新的な技術とメトリクスを実装することで、モデル性能を犠牲にすることなく、機械学習アプリケーションにおける計算効率の高いプライバシー保護を実現する。
さらに,このアプローチは,未学習の程度を評価する新しい手法を提供する。
関連論文リスト
- Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation [11.174705227990241]
機械学習は、大規模な再トレーニングを必要とせずに、トレーニングされたモデルから特定のデータの影響を取り除くテクニックである。
本稿では,階層的関連分析と神経経路摂動を用いた機械学習の新しい手法を提案する。
本手法は,高関連ニューロンを同定・摂動することで,機械学習性能とモデルの有用性のバランスをとる。
論文 参考訳(メタデータ) (2024-10-31T07:37:04Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Machine Unlearning with Minimal Gradient Dependence for High Unlearning Ratios [18.73206066109299]
ミニ・アンラーニング(Mini-Unlearning)は、批判的な観察を活かした新しいアプローチである。
この軽量でスケーラブルな方法は、モデルの精度を大幅に向上し、メンバシップ推論攻撃に対する耐性を高める。
実験の結果,Mini-Unlearningは非学習率が高いだけでなく,既存の手法よりも精度と安全性が優れていることがわかった。
論文 参考訳(メタデータ) (2024-06-24T01:43:30Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
我々は、機械学習が未学習データの機密内容を漏洩させる範囲を理解するために、最初の調査を行う。
機械学習・アズ・ア・サービス・セッティングの下で、未学習サンプルの特徴とラベル情報を明らかにするアンラーニング・インバージョン・アタックを提案する。
実験結果から,提案攻撃は未学習データのセンシティブな情報を明らかにすることができることが示された。
論文 参考訳(メタデータ) (2024-04-04T06:37:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Dataset Condensation Driven Machine Unlearning [0.0]
データ規制要件とプライバシ保護機械学習の現在のトレンドは、機械学習の重要性を強調している。
我々は,機械学習のプライバシ,ユーティリティ,効率のバランスをとるために,新しいデータセット凝縮手法と革新的なアンラーニング手法を提案する。
本稿では,機械のアンラーニングを計測するための新しい効果的なアプローチを提案し,その適用方法として,メンバシップ推論とモデル逆転攻撃の防御を提案する。
論文 参考訳(メタデータ) (2024-01-31T21:48:25Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
本研究では,不確実性に基づく機械学習アルゴリズムの評価を行う。
これは私たちの最良の知識の一般的な評価の最初の定義です。
論文 参考訳(メタデータ) (2022-08-23T09:37:31Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。