論文の概要: Dataset Condensation Driven Machine Unlearning
- arxiv url: http://arxiv.org/abs/2402.00195v2
- Date: Sun, 12 May 2024 20:42:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 00:23:41.240473
- Title: Dataset Condensation Driven Machine Unlearning
- Title(参考訳): Dataset Condensation Driven Machine Unlearning
- Authors: Junaid Iqbal Khan,
- Abstract要約: データ規制要件とプライバシ保護機械学習の現在のトレンドは、機械学習の重要性を強調している。
我々は,機械学習のプライバシ,ユーティリティ,効率のバランスをとるために,新しいデータセット凝縮手法と革新的なアンラーニング手法を提案する。
本稿では,機械のアンラーニングを計測するための新しい効果的なアプローチを提案し,その適用方法として,メンバシップ推論とモデル逆転攻撃の防御を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current trend in data regulation requirements and privacy-preserving machine learning has emphasized the importance of machine unlearning. The naive approach to unlearning training data by retraining over the complement of the forget samples is susceptible to computational challenges. These challenges have been effectively addressed through a collection of techniques falling under the umbrella of machine unlearning. However, there still exists a lack of sufficiency in handling persistent computational challenges in harmony with the utility and privacy of unlearned model. We attribute this to the lack of work on improving the computational complexity of approximate unlearning from the perspective of the training dataset. In this paper, we aim to fill this gap by introducing dataset condensation as an essential component of machine unlearning in the context of image classification. To achieve this goal, we propose new dataset condensation techniques and an innovative unlearning scheme that strikes a balance between machine unlearning privacy, utility, and efficiency. Furthermore, we present a novel and effective approach to instrumenting machine unlearning and propose its application in defending against membership inference and model inversion attacks. Additionally, we explore a new application of our approach, which involves removing data from `condensed model', which can be employed to quickly train any arbitrary model without being influenced by unlearning samples. The corresponding code is available at \href{https://github.com/algebraicdianuj/DC_U}{URL}.
- Abstract(参考訳): データ規制要件とプライバシ保護機械学習の現在のトレンドは、機械学習の重要性を強調している。
余分なサンプルを補足して再訓練することで、未学習のトレーニングデータに対する素直なアプローチは、計算上の課題に影響を受けやすい。
これらの課題は、機械学習の傘の下に落ちてくるテクニックの集合を通じて、効果的に対処されてきた。
しかし、未学習モデルの実用性とプライバシと調和して、永続的な計算課題を扱うのに十分でないことがまだ残っている。
これは、トレーニングデータセットの観点から、近似アンラーニングの計算複雑性を改善する作業が不足しているためである。
本稿では,画像分類の文脈において,機械学習の重要な要素としてデータセットの凝縮を導入することで,このギャップを埋めることを目的とする。
この目的を達成するために、機械学習のプライバシ、ユーティリティ、効率のバランスをとる新しいデータセット凝縮技術と革新的なアンラーニングスキームを提案する。
さらに,機械のアンラーニングを計測するための新しい効果的な手法を提案し,その適用方法として,メンバシップ推論とモデル逆転攻撃を防御する手法を提案する。
さらに,本手法の新たな応用として,未学習サンプルの影響を受けずに任意のモデルを迅速に学習できる「凝縮モデル」からデータを抽出する手法を提案する。
対応するコードは \href{https://github.com/algebraicdianuj/DC_U}{URL} で公開されている。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
我々は、機械学習が未学習データの機密内容を漏洩させる範囲を理解するために、最初の調査を行う。
機械学習・アズ・ア・サービス・セッティングの下で、未学習サンプルの特徴とラベル情報を明らかにするアンラーニング・インバージョン・アタックを提案する。
実験結果から,提案攻撃は未学習データのセンシティブな情報を明らかにすることができることが示された。
論文 参考訳(メタデータ) (2024-04-04T06:37:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Loss-Free Machine Unlearning [51.34904967046097]
我々は、再学習とラベルなしの両方の機械学習アプローチを提案する。
Retraining-freeアプローチは、損失から派生したFisher情報を利用することが多く、利用できないラベル付きデータを必要とする。
本稿では,モデル出力のl2ノルムの勾配に対して,フィッシャー情報行列の対角線を近似感度に置き換えるSelective Synaptic Dampeningアルゴリズムの拡張を提案する。
論文 参考訳(メタデータ) (2024-02-29T16:15:34Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
そこで本研究では,不エクササイズマシンの非学習戦略であるTop-KパラメータとRandom-kパラメータの微粒化を提案する。
また,機械学習の有効性を評価する上での課題にも取り組む。
論文 参考訳(メタデータ) (2024-01-09T07:14:45Z) - Generative Adversarial Networks Unlearning [13.342749941357152]
機械学習は、訓練された機械学習モデルからトレーニングデータを消去するソリューションとして登場した。
GAN(Generative Adversarial Networks)の研究は、ジェネレータと識別器を含む独自のアーキテクチャによって制限されている。
本稿では,GANモデルにおける項目学習とクラス学習の両方を対象としたケースドアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-19T02:21:21Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD)は高速で、訓練データの長期保存を必要としない。
高速で性能が高く,トレーニングデータの長期保存を必要としない,新しい2段階のポストホック,リトレーニングフリーなマシンアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-15T11:30:45Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。