Breaking local quantum speed limits with steering
- URL: http://arxiv.org/abs/2401.04599v1
- Date: Tue, 9 Jan 2024 15:15:13 GMT
- Title: Breaking local quantum speed limits with steering
- Authors: Federico Centrone, Manuel Gessner
- Abstract summary: We show how quantum correlations allow us to break the local speed limits of physical processes.
Inequalities that bound the minimal time of evolution of a quantum state by energy fluctuations can be violated by conditioning on the measurement outcomes of a remote system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show how quantum correlations allow us to break the local speed limits of
physical processes using only local measurements and classical communication
between two parties that share an entangled state. Inequalities that bound the
minimal time of evolution of a quantum state by energy fluctuations can be
violated in the presence of steering by conditioning on the measurement
outcomes of a remote system. Our results open up new pathways for studying how
quantum correlations influence the dynamical properties of states and
observables.
Related papers
- Two-mode Open Quantum Systems: Decoherence and Localized Bound State Dynamics [1.3281936946796913]
Dissipationless localized bound states of open quantum systems are robust to decoherence.
This may provide a new avenue to develop dissipationless quantum technology for quantum operations.
arXiv Detail & Related papers (2024-10-28T08:51:14Z) - Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Entanglement-assisted quantum speedup: Beating local quantum speed limits [0.0]
Research in quantum information science aims to surpass the scaling limitations of classical information processing.
Speed limits in interacting quantum systems are derived by comparing the rates of change in actual quantum dynamics.
Proposed speed limits provide a tight bound on quantum speed advantage, including a quantum gain that can scale exponentially with the system's size.
arXiv Detail & Related papers (2022-11-27T17:38:57Z) - Speed limits on correlations in bipartite quantum systems [1.3854111346209868]
We derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes.
Some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.
arXiv Detail & Related papers (2022-07-12T16:23:28Z) - Quantum speed limit for the creation and decay of quantum correlations [0.0]
We derive Margolus-Levitin and Mandelstamm-Tamm type bound on the quantum speed limit time for the creation and decay of quantum correlations.
We consider entanglement and quantum discord measures of quantum correlations, quantified using the Bures distance-based measure.
arXiv Detail & Related papers (2022-05-24T08:00:40Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.