Entanglement inside a black hole before the Page time
- URL: http://arxiv.org/abs/2401.04706v3
- Date: Mon, 12 Aug 2024 11:05:40 GMT
- Title: Entanglement inside a black hole before the Page time
- Authors: Yuxuan Liu, Shao-Kai Jian, Yi Ling, Zhuo-Yu Xian,
- Abstract summary: We investigate the evolution of entanglement within an open, strongly coupled system interacting with a heat bath as its environment.
In quantum mechanics, we consider a double copy of the SYK-plus-bath system in a global TFD state, resembling an eternal black hole interacting with an environment.
- Score: 3.686714123631264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the evolution of entanglement within an open, strongly coupled system interacting with a heat bath as its environment, in the frameworks of both the doubly holographic model and the Sachdev-Ye-Kitaev (SYK) model. Generally, the entanglement within the system initially increases due to internal interactions; however, it eventually dissipates into the environment. In the doubly holographic setup, we consider an end-of-the-world brane in the bulk to represent an eternal black hole coupled with its radiation and the evolution of the global thermofield double (TFD) state. For small black holes, the reflected entropy between the bipartition exhibits a ramp-plateau-slump behavior, where the plateau arises due to the phase transition of the entanglement wedge cross-section before the Page time. Similarly, the mutual information between the bipartition displays a ramp-slop-stabilizing behavior. In quantum mechanics, we consider a double copy of the SYK-plus-bath system in a global TFD state, resembling an eternal black hole interacting with an environment. The R\'enyi mutual information within the double-copied SYK clusters exhibits a ramp-plateau-slope-stabilizing behavior. The dynamic behaviors of the entanglement quantities observed in these two models are attributable to the competition between the internal interaction of the system and the external interaction with the baths. Our study provides a fine-grained picture of the entanglement dynamics inside black holes before their Page time.
Related papers
- Dynamics and fragmentation of bosons in an optical lattice inside a cavity using Wannier and position bases [0.0]
We study the dynamics of a Bose-Einstein condensate (BEC) inside an optical cavity with transverse pumping.
We show that both position and Wannier bases qualitatively agree on the photon-mediated fragmentation dynamics of the BEC.
We predict a sudden increase in the fragmentation behavior for larger pump intensities, which may hint at an eventual transition to a Mott insulating phase.
arXiv Detail & Related papers (2025-04-11T06:24:23Z) - Hot wormholes and chaos dynamics in a two-coupled SYK model [0.0]
We study the dynamics of chaos across the phase transition in a 2-coupled Sachdev-Ye-Kitaev (SYK) model.
We employ two non-equilibrium protocols that allow access to the unstable "hot wormhole" phase.
Our results uncover a rich structure within this phase, including both thermal and non-thermal solutions.
arXiv Detail & Related papers (2025-01-08T18:15:09Z) - Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Chaos and spatial prethermalization in driven-dissipative bosonic chains [0.0]
We investigate the spatial aspect of thermalization in quantum many-body systems.
We uncover a two-stage thermalization process along the spatial dimension.
We argue that similar prethermal chaotic phases are likely to occur in a broad range of extended driven-dissipative systems.
arXiv Detail & Related papers (2024-09-18T18:00:00Z) - Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems [0.0]
We experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model.
We find uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics.
Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons.
arXiv Detail & Related papers (2024-04-23T10:22:40Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Interplay between optomechanics and the dynamical Casimir effect [55.41644538483948]
We develop a model of a quantum field confined within a cavity with a movable wall where the position of the wall is quantized.
We obtain a full description of the dynamics of both the quantum field and the confining wall depending on the initial state of the whole system.
arXiv Detail & Related papers (2022-04-22T14:27:30Z) - The shared universality of charged black holes and the many many-body
SYK model [0.0]
We investigate the charged $q/2$-body interacting Sachdev-Ye-Kitaev (SYK) model in the grand-canonical ensemble.
By varying the chemical potential or temperature, we find that the system undergoes a phase transition between low and high entropies.
A similar transition in entropy is seen in charged AdS black holes transitioning between a large and small event horizon.
arXiv Detail & Related papers (2022-04-20T17:17:25Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Quantum dynamics in low-dimensional topological systems [0.0]
We study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices.
We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters.
arXiv Detail & Related papers (2020-08-05T10:58:35Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z) - A Random Unitary Circuit Model for Black Hole Evaporation [0.0]
We study the dynamics of a quantum many-body qudit system coupled to an external environment.
In the presence of a $U(1)$ conserved charge, we show that the entanglement follows a Page-like behavior in time.
arXiv Detail & Related papers (2020-02-21T11:37:39Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.