論文の概要: Segment anything model (SAM) for brain extraction in fMRI studies
- arxiv url: http://arxiv.org/abs/2401.04740v1
- Date: Tue, 9 Jan 2024 06:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 16:17:48.120064
- Title: Segment anything model (SAM) for brain extraction in fMRI studies
- Title(参考訳): fMRI研究における脳抽出のためのSegment Any Model(SAM)
- Authors: Dwith Chenna, Suyash Bhogawar
- Abstract要約: 我々は頭蓋骨のアーティファクトを除去することで脳のセグメンテーションを神経画像化するためのセグメントモデル(SAM)を用いる。
実験の結果は、カスタムな医用画像データセットをトレーニングすることなく、神経画像の自動分割アルゴリズムを用いて探索する有望な結果を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain extraction and removal of skull artifacts from magnetic resonance
images (MRI) is an important preprocessing step in neuroimaging analysis. There
are many tools developed to handle human fMRI images, which could involve
manual steps for verifying results from brain segmentation that makes it time
consuming and inefficient. In this study, we will use the segment anything
model (SAM), a freely available neural network released by Meta[4], which has
shown promising results in many generic segmentation applications. We will
analyze the efficiency of SAM for neuroimaging brain segmentation by removing
skull artifacts. The results of the experiments showed promising results that
explore using automated segmentation algorithms for neuroimaging without the
need to train on custom medical imaging dataset.
- Abstract(参考訳): 磁気共鳴画像(MRI)から頭蓋骨の脳の抽出と除去は、神経画像解析において重要な前処理ステップである。
人間のfmri画像を扱うために、多くのツールが開発されており、脳のセグメンテーションの結果を手作業で確認し、時間を消費し、非効率にする。
本研究では,Meta[4] がリリースしたニューラルネットワークである segment Any Model (SAM) を用いて,多くのジェネリックセグメンテーションアプリケーションにおいて有望な結果を示した。
我々は頭蓋骨のアーティファクトを除去し,脳のセグメンテーションを神経画像化するためのSAMの効率を解析する。
実験の結果は、カスタムな医用画像データセットをトレーニングすることなく、神経画像の自動分割アルゴリズムを用いて探索する有望な結果を示した。
関連論文リスト
- An Ensemble Approach for Brain Tumor Segmentation and Synthesis [0.12777007405746044]
磁気共鳴イメージング(MRI)における機械学習の統合は、信じられないほど効果的であることが証明されている。
ディープラーニングモデルは、複雑なデータの複雑な詳細をキャプチャするために、複数の処理層を利用する。
本稿では,最先端アーキテクチャを組み込んだディープラーニングフレームワークを提案し,精度の高いセグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-11-26T17:28:51Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
マルチモーダル脳磁気共鳴(MR)イメージングは神経科学や神経学において不可欠である。
現在のMR画像合成アプローチは、通常、特定のタスクのための独立したデータセットで訓練される。
テキスト誘導ユニバーサルMR画像合成モデルであるTUMSynについて述べる。
論文 参考訳(メタデータ) (2024-09-25T11:14:47Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
パブリックMRIデータセットは、脳腫瘍、髄膜腫、グリオーマ、下垂体腫瘍の3つの変種を持つ233人の患者の3064 TI強調画像を含む。
データセットファイルは、よく知られた画像セグメンテーション深層学習モデルの実装とトレーニングを利用する方法論に順応する前に、変換され、前処理される。
実験の結果,Adamを用いた再帰的残差U-Netは平均差0.8665に到達し,他の最先端ディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-29T13:33:21Z) - SAM vs BET: A Comparative Study for Brain Extraction and Segmentation of
Magnetic Resonance Images using Deep Learning [0.0]
Segment Anything Model (SAM)は、より正確で堅牢で汎用的なツールとして、幅広い脳の抽出とセグメンテーションの応用の可能性を秘めている。
我々はSAMを、様々な画像品質、MR配列、脳の病変が異なる脳領域に影響を及ぼす様々な脳スキャンにおいて、BETと呼ばれる、広く使われている現在の金の標準技術と比較した。
論文 参考訳(メタデータ) (2023-04-10T17:50:52Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - SynthStrip: Skull-Stripping for Any Brain Image [7.846209440615028]
我々は,学習に基づく迅速な脳抽出ツールであるSynthStripを紹介した。
解剖学的セグメンテーションを活用することで、SynthStripは、解剖学、強度分布、および医療画像の現実的な範囲をはるかに超える人工的なトレーニングデータセットを生成する。
一般的な頭蓋骨切断ベースラインよりも精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-03-18T14:08:20Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
マルチモダリティイメージングは、疾患の診断を改善し、解剖学的特性を持つ組織における相違を明らかにする。
完全な整列とペアの多モードニューロイメージングデータの存在は、脳研究においてその効果を証明している。
もう一つの解決策は、教師なしまたは弱教師なしの学習方法を探究し、欠落した神経画像データを合成することである。
論文 参考訳(メタデータ) (2022-02-14T19:29:08Z) - Interpretation of 3D CNNs for Brain MRI Data Classification [56.895060189929055]
T1脳MRIにおける拡散テンソル画像の男女差について,これまでの知見を拡張した。
ボクセルの3次元CNN解釈を3つの解釈法の結果と比較する。
論文 参考訳(メタデータ) (2020-06-20T17:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。