Entanglement in interacting Majorana chains and transitions of von
Neumann algebras
- URL: http://arxiv.org/abs/2401.04764v1
- Date: Tue, 9 Jan 2024 19:00:01 GMT
- Title: Entanglement in interacting Majorana chains and transitions of von
Neumann algebras
- Authors: Pablo Basteiro, Giuseppe Di Giulio, Johanna Erdmenger, Zhuo-Yu Xian
- Abstract summary: We consider Majorana lattices with two-site interactions consisting of a general function of the fermion bilinear.
The models are exactly solvable in the limit of a large number of on-site fermions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider Majorana lattices with two-site interactions consisting of a
general function of the fermion bilinear. The models are exactly solvable in
the limit of a large number of on-site fermions. The four-site chain exhibits a
quantum phase transition controlled by the hopping parameters and manifests
itself in a discontinuous entanglement entropy, obtained by constraining the
one-sided modular Hamiltonian. Inspired by recent work within the AdS/CFT
correspondence, we identify transitions between types of von Neumann operator
algebras throughout the phase diagram. We find transitions of the form
II$_1\leftrightarrow\,$III$\,\,\leftrightarrow\,\,$I$_\infty$ that reduce to
II$_1\leftrightarrow\,\,$I$_\infty$ in the strongly interacting limit, where
they connect non-factorized and factorized ground states. Our results provide
novel realizations of such transitions in a controlled many-body model.
Related papers
- Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy under quantum jumps that induce local particle losses in a model of free fermions hopping.
We show that by tuning the system parameters, a measurement-induced entanglement transition occurs where the entanglement entropy scaling changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Nonlinear sigma models for monitored dynamics of free fermions [0.0]
We derive descriptions for measurement-induced phase transitions in free fermion systems.
We use the replica trick to map the dynamics to the imaginary time evolution of an effective spin chain.
This is a nonlinear sigma model for an $Ntimes N$ matrix, in the replica limit $Nto 1$.
arXiv Detail & Related papers (2023-02-24T18:56:37Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Disentanglement, disorder lines, and Majorana edge states in a solvable
quantum chain [0.0]
The model has three known gapped phases with local and nonlocal (string) orders, along with the gapless incommensurate (IC) phase in the $U(1)$ limit.
The analysis of those roots yields the phase diagram which contains continuous quantum phase transitions and weaker singularities known as disorder lines (DLs) or modulation transitions.
The salient property of zeros of the spectrum is that the ground state is shown to be separable (factorized) and the model is disentangled on a subset of the DLs.
arXiv Detail & Related papers (2022-07-04T00:16:08Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Lifshitz phase transitions in one-dimensional Gamma model [0.0]
We study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model.
The results indicate that the Gamma model can act as an exactly solvable model to describe Lifshitz phase transitions in correlated electron systems.
arXiv Detail & Related papers (2020-09-17T15:46:36Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.