Multi-User Chat Assistant (MUCA): a Framework Using LLMs to Facilitate Group Conversations
- URL: http://arxiv.org/abs/2401.04883v4
- Date: Fri, 04 Oct 2024 18:09:00 GMT
- Title: Multi-User Chat Assistant (MUCA): a Framework Using LLMs to Facilitate Group Conversations
- Authors: Manqing Mao, Paishun Ting, Yijian Xiang, Mingyang Xu, Julia Chen, Jianzhe Lin,
- Abstract summary: Multi-User Chat Assistant (MUCA) is an LLM-based framework tailored for group discussions.
MUCA consists of three main modules: Sub-topic Generator, Dialog Analyzer, and Conversational Strategies Arbitrator.
This paper further proposes an LLM-based Multi-User Simulator (MUS) to ease MUCA's optimization.
- Score: 3.6975712141698445
- License:
- Abstract: Recent advancements in large language models (LLMs) have provided a new avenue for chatbot development. Most existing research, however, has primarily centered on single-user chatbots that determine "What" to answer. This paper highlights the complexity of multi-user chatbots, introducing the 3W design dimensions: "What" to say, "When" to respond, and "Who" to answer. Additionally, we proposed Multi-User Chat Assistant (MUCA), an LLM-based framework tailored for group discussions. MUCA consists of three main modules: Sub-topic Generator, Dialog Analyzer, and Conversational Strategies Arbitrator. These modules jointly determine suitable response contents, timings, and appropriate addressees. This paper further proposes an LLM-based Multi-User Simulator (MUS) to ease MUCA's optimization, enabling faster simulation of conversations between the chatbot and simulated users, and speeding up MUCA's early development. In goal-oriented conversations with a small to medium number of participants, MUCA demonstrates effectiveness in tasks like chiming in at appropriate timings, generating relevant content, and improving user engagement, as shown by case studies and user studies.
Related papers
- Improving Ontology Requirements Engineering with OntoChat and Participatory Prompting [3.3241053483599563]
ORE has primarily relied on manual methods, such as interviews and collaborative forums, to gather user requirements from domain experts.
Current OntoChat offers a framework for ORE that utilise large language models (LLMs) to streamline the process.
This study produces pre-defined prompt templates based on user queries, focusing on creating and refining personas, goals, scenarios, sample data, and data resources for user stories.
arXiv Detail & Related papers (2024-08-09T19:21:14Z) - A Reliable Common-Sense Reasoning Socialbot Built Using LLMs and Goal-Directed ASP [3.17686396799427]
We propose AutoCompanion, a socialbot that uses an LLM model to translate natural language into predicates.
This paper presents the framework design and how an LLM is used to parse user messages and generate a response from the s(CASP) engine output.
arXiv Detail & Related papers (2024-07-26T04:13:43Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - On Overcoming Miscalibrated Conversational Priors in LLM-based Chatbots [19.423566424346166]
We study the use of Large Language Model (LLM)-based chatbots to power recommender systems.
We observe that the chatbots respond poorly when they encounter under-specified requests.
We conjecture that such miscalibrated response tendencies can be attributed to LLM fine-tuning using annotators.
arXiv Detail & Related papers (2024-06-01T15:54:45Z) - MemoChat: Tuning LLMs to Use Memos for Consistent Long-Range Open-Domain
Conversation [43.24092422054248]
We propose a pipeline for refining instructions that enables large language models to effectively employ self-composed memos.
We demonstrate a long-range open-domain conversation through iterative "memorization-retrieval-response" cycles.
The instructions are reconstructed from a collection of public datasets to teach the LLMs to memorize and retrieve past dialogues with structured memos.
arXiv Detail & Related papers (2023-08-16T09:15:18Z) - ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large
Language Models [125.7209927536255]
We propose ChatCoT, a tool-augmented chain-of-thought reasoning framework for chat-based LLMs.
In ChatCoT, we model the chain-of-thought (CoT) reasoning as multi-turn conversations, to utilize tools in a more natural way through chatting.
Our approach can effectively leverage the multi-turn conversation ability of chat-based LLMs, and integrate the thought chain following and tools manipulation in a unified way.
arXiv Detail & Related papers (2023-05-23T17:54:33Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z) - Prompted LLMs as Chatbot Modules for Long Open-domain Conversation [7.511596831927614]
We propose MPC, a new approach for creating high-quality conversational agents without the need for fine-tuning.
Our method utilizes pre-trained large language models (LLMs) as individual modules for long-term consistency and flexibility.
arXiv Detail & Related papers (2023-05-08T08:09:00Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Disentangling Online Chats with DAG-Structured LSTMs [55.33014148383343]
DAG-LSTMs are a generalization of Tree-LSTMs that can handle directed acyclic dependencies.
We show that the novel model we propose achieves state of the art status on the task of recovering reply-to relations.
arXiv Detail & Related papers (2021-06-16T18:00:00Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
We frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context.
We propose a novel multi-task learning framework that supports efficient encoding through large pretrained models.
Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks.
arXiv Detail & Related papers (2020-10-15T14:21:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.