論文の概要: Closed-Form Interpretation of Neural Network Classifiers with Symbolic Gradients
- arxiv url: http://arxiv.org/abs/2401.04978v2
- Date: Tue, 01 Oct 2024 00:11:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:33:31.933155
- Title: Closed-Form Interpretation of Neural Network Classifiers with Symbolic Gradients
- Title(参考訳): 記号勾配を持つニューラルネットワーク分類器の閉形式解釈
- Authors: Sebastian Johann Wetzel,
- Abstract要約: 人工ニューラルネットワークにおいて、任意の単一ニューロンのクローズドフォーム解釈を見つけるための統一的なフレームワークを紹介します。
ニューラルネットワーク分類器を解釈して、決定境界に符号化された概念のクローズドフォーム表現を明らかにする。
- 参考スコア(独自算出の注目度): 0.7832189413179361
- License:
- Abstract: I introduce a unified framework for finding a closed-form interpretation of any single neuron in an artificial neural network. Using this framework I demonstrate how to interpret neural network classifiers to reveal closed-form expressions of the concepts encoded in their decision boundaries. In contrast to neural network-based regression, for classification, it is in general impossible to express the neural network in the form of a symbolic equation even if the neural network itself bases its classification on a quantity that can be written as a closed-form equation. The interpretation framework is based on embedding trained neural networks into an equivalence class of functions that encode the same concept. I interpret these neural networks by finding an intersection between the equivalence class and human-readable equations defined by a symbolic search space. The approach is not limited to classifiers or full neural networks and can be applied to arbitrary neurons in hidden layers or latent spaces.
- Abstract(参考訳): 人工ニューラルネットワークにおいて、任意の単一ニューロンのクローズドフォーム解釈を見つけるための統一的なフレームワークを紹介します。
このフレームワークを使用して、ニューラルネットワーク分類器を解釈して、決定境界にエンコードされた概念のクローズドフォーム表現を明らかにする。
ニューラルネットワークに基づく回帰とは対照的に、分類においては、ニューラルネットワーク自体が閉形式方程式として書ける量に基づいて分類したとしても、ニューラルネットワークを記号方程式の形で表現することは一般的に不可能である。
解釈フレームワークは、トレーニングされたニューラルネットワークを同じ概念をエンコードする同値クラスの関数に埋め込むことに基づいている。
記号探索空間で定義される同値類と可読方程式の交点を見つけることによって,これらのニューラルネットワークを解釈する。
このアプローチは分類器や完全なニューラルネットワークに限らず、隠れた層や潜伏空間の任意のニューロンに適用できる。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Taming Binarized Neural Networks and Mixed-Integer Programs [2.7624021966289596]
バイナライズされたニューラルネットワークはテーム表現を許容することを示す。
これにより、Bolte et al. のフレームワークを暗黙の微分に使用できる。
このアプローチは、より広範な混合整数プログラムのクラスにも使用することができる。
論文 参考訳(メタデータ) (2023-10-05T21:04:16Z) - NeurASP: Embracing Neural Networks into Answer Set Programming [5.532477732693001]
NeurASPは、ニューラルネットワークを採用することで、応答セットプログラムの単純な拡張である。
ニューラルネットワーク出力を応答集合プログラムの原子事実上の確率分布として扱うことにより、NeurASPはサブシンボリックおよびシンボリック計算を統合するためのシンプルで効果的な方法を提供する。
論文 参考訳(メタデータ) (2023-07-15T04:03:17Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
過パラメータのニューラルネットワークが制約を満たしていることを示す。
公平なニューラルネットワーク分類器を構築する上で重要な要素は、ニューラルネットワークの非応答解析を確立することである。
論文 参考訳(メタデータ) (2020-12-30T18:46:50Z) - The Representation Theory of Neural Networks [7.724617675868718]
ニューラルネットワークは、量子表現の数学的理論によって表現できることを示す。
ネットワーククイバーが共通のニューラルネットワークの概念に優しく適応していることを示します。
また、ニューラルネットワークがデータから表現を生成する方法を理解するためのクイバー表現モデルも提供します。
論文 参考訳(メタデータ) (2020-07-23T19:02:14Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
この研究では、ニューラルネットワークの特定のクラス、すなわち残留ニューラルネットワークに焦点を当てる。
我々は、ネットワークのパラメータ、すなわち重みとバイアスに関する定常状態と感度を分析する。
残留ニューラルネットワークにインスパイアされた微視的ダイナミクスの修正は、ネットワークのフォッカー・プランクの定式化につながる。
論文 参考訳(メタデータ) (2020-01-07T13:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。