論文の概要: Deep OFDM Channel Estimation: Capturing Frequency Recurrence
- arxiv url: http://arxiv.org/abs/2401.05436v1
- Date: Sun, 7 Jan 2024 14:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 02:45:54.229548
- Title: Deep OFDM Channel Estimation: Capturing Frequency Recurrence
- Title(参考訳): Deep OFDM Channel Estimation: Capturing Frequency Recurrence
- Authors: Abu Shafin Mohammad Mahdee Jameel, Akshay Malhotra, Aly El Gamal, and
Shahab Hamidi-Rad
- Abstract要約: OFDMシステムにおける深層学習に基づくチャネル推定手法を提案する。
我々は、単一OFDMスロット内で繰り返しニューラルネットワーク技術を採用し、レイテンシとメモリ制約を克服する。
提案したSisRafNetは、既存のディープラーニングに基づくチャネル推定手法と比較して優れた推定性能を提供する。
- 参考スコア(独自算出の注目度): 10.76835122839777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a deep-learning-based channel estimation scheme in
an orthogonal frequency division multiplexing (OFDM) system. Our proposed
method, named Single Slot Recurrence Along Frequency Network (SisRafNet), is
based on a novel study of recurrent models for exploiting sequential behavior
of channels across frequencies. Utilizing the fact that wireless channels have
a high degree of correlation across frequencies, we employ recurrent neural
network techniques within a single OFDM slot, thus overcoming the latency and
memory constraints typically associated with recurrence based methods. The
proposed SisRafNet delivers superior estimation performance compared to
existing deep-learning-based channel estimation techniques and the performance
has been validated on a wide range of 3rd Generation Partnership Project (3GPP)
compliant channel scenarios at multiple signal-to-noise ratios.
- Abstract(参考訳): 本稿では,直交周波数分割多重化(OFDM)システムにおける深層学習に基づくチャネル推定手法を提案する。
提案手法であるsisrafnet(single slot repeat along frequency network)は,周波数にまたがるチャネルの逐次挙動を利用するための再帰モデルに関する新しい研究に基づいている。
無線チャネルが周波数間で高い相関関係にあるという事実を利用して、単一OFDMスロット内での繰り返しニューラルネットワーク技術を用いて、リカレンスベースの手法に典型的な遅延とメモリ制約を克服する。
提案したSisRafNetは,既存の深層学習に基づくチャネル推定手法と比較して優れた評価性能を示し,複数の信号対雑音比で第3世代パートナーシッププロジェクト(GPP)準拠のチャネルシナリオで評価されている。
関連論文リスト
- Low-Overhead Channel Estimation via 3D Extrapolation for TDD mmWave Massive MIMO Systems Under High-Mobility Scenarios [41.213515826100696]
本稿では,パイロットオーバヘッドを体系的に低減する空間的,周波数的,時間的領域(3D)チャネル外挿フレームワークを提案する。
数値計算の結果,提案手法はパイロット訓練のオーバーヘッドを16倍以上に抑えることができた。
論文 参考訳(メタデータ) (2024-06-13T07:42:25Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - An Efficient Machine Learning-based Channel Prediction Technique for
OFDM Sub-Bands [0.0]
我々はOFDMサブバンドにおけるチャネル予測のための効率的な機械学習(ML)に基づく手法を提案する。
提案手法の新規性は、選択的なフェーディングにおける将来のチャネル挙動を推定するために使用されるチャネルフェーディングサンプルのトレーニングにある。
論文 参考訳(メタデータ) (2023-05-31T09:41:27Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
この課題に対処するために, 深部生成モデル(DGM)に基づく手法を提案する。
アップリンクチャネルとダウンリンクチャネルの部分的相互性を実行し、まず、周波数非依存のチャネルパラメータを推定する。
次に、各伝搬路の位相である周波数固有チャネルパラメータをダウンリンクトレーニングにより推定する。
論文 参考訳(メタデータ) (2022-03-09T18:32:10Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
我々は、ダウンリンクシナリオでチャネル推定を実現するために、一般的な残差畳み込みニューラルネットワークをデプロイする。
チャネル推定における他のディープラーニング手法と比較して,平均二乗誤差計算の改善が示唆された。
論文 参考訳(メタデータ) (2022-01-24T19:55:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - FedRec: Federated Learning of Universal Receivers over Fading Channels [92.15358738530037]
本稿では,ダウンリンクフェージングチャネルに対するニューラルネットワークを用いたシンボル検出手法を提案する。
複数のユーザが協力して、普遍的なデータ駆動型検出器を学習する。
得られた受信機の性能は、フェーディング統計の知識を必要とせずに、様々なチャネル条件下でMAP性能に近づくことを示す。
論文 参考訳(メタデータ) (2020-11-14T11:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。