論文の概要: Continual Learning-Aided Super-Resolution Scheme for Channel Reconstruction and Generalization in OFDM Systems
- arxiv url: http://arxiv.org/abs/2503.01897v1
- Date: Fri, 28 Feb 2025 01:31:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:18.360262
- Title: Continual Learning-Aided Super-Resolution Scheme for Channel Reconstruction and Generalization in OFDM Systems
- Title(参考訳): OFDMシステムにおけるチャネル再構築と一般化のための連続学習支援超解法スキーム
- Authors: Jianqiao Chen, Nan Ma, Wenkai Liu, Xiaodong Xu, Ping Zhang,
- Abstract要約: 我々は、チャネル再構成と一般化のためのニューラルネットワークをそれぞれ設計する、効率的なOFDMチャネル推定のための新しいスキームを利用する。
前者に対しては、パイロット位置のチャネルを全時間周波数チャネルにマッピングするための二重アテンション支援型超解像ニューラルネットワーク(DA-SRNN)を提案する。
後者では、ニューラルネットワークを異なるチャネル分布に適応させるために、継続学習(CL)支援トレーニング戦略を導入する。
- 参考スコア(独自算出の注目度): 11.06722464955919
- License:
- Abstract: Channel reconstruction and generalization capability are of equal importance for developing channel estimation schemes within deep learning (DL) framework. In this paper, we exploit a novel DL-based scheme for efficient OFDM channel estimation where the neural networks for channel reconstruction and generalization are respectively designed. For the former, we propose a dual-attention-aided super-resolution neural network (DA-SRNN) to map the channels at pilot positions to the whole time-frequency channels. Specifically, the channel-spatial attention mechanism is first introduced to sequentially infer attention maps along two separate dimensions corresponding to two types of underlying channel correlations, and then the lightweight SR module is developed for efficient channel reconstruction. For the latter, we introduce continual learning (CL)-aided training strategies to make the neural network adapt to different channel distributions. Specifically, the elastic weight consolidation (EWC) is introduced as the regularization term in regard to loss function of channel reconstruction, which can constrain the direction and space of updating the important weights of neural networks among different channel distributions. Meanwhile, the corresponding training process is provided in detail. By evaluating under 3rd Generation Partnership Project (3GPP) channel models, numerical results verify the superiority of the proposed channel estimation scheme with significantly improved channel reconstruction and generalization performance over counterparts.
- Abstract(参考訳): チャネル再構築と一般化能力は,ディープラーニング(DL)フレームワーク内でのチャネル推定手法の開発において同等に重要である。
本稿では, チャネル再構成と一般化のためのニューラルネットワークをそれぞれ設計した, 効率的なOFDMチャネル推定のための新しいDLベースのスキームを利用する。
前者に対しては、パイロット位置のチャネルを全時間周波数チャネルにマッピングするための二重アテンション支援型超解像ニューラルネットワーク(DA-SRNN)を提案する。
具体的には,2種類のチャネル相関に対応する2次元のアテンションマップを逐次推論するために,まずチャネル空間のアテンション機構を導入し,その後,効率的なチャネル再構成のための軽量SRモジュールを開発した。
後者では、ニューラルネットワークを異なるチャネル分布に適応させるために、継続学習(CL)支援トレーニング戦略を導入する。
具体的には、チャネル再構成の損失関数に関する正規化用語として弾性重み統合(EWC)を導入し、異なるチャネル分布間のニューラルネットワークの重要な重みを更新する方向と空間を制約することができる。
一方、対応するトレーニングプロセスの詳細が提供される。
第3世代パートナーシッププロジェクト (3GPP) のチャネルモデルに基づいて評価することにより,提案したチャネル推定手法の優位性を検証する。
関連論文リスト
- Deep OFDM Channel Estimation: Capturing Frequency Recurrence [10.76835122839777]
OFDMシステムにおける深層学習に基づくチャネル推定手法を提案する。
我々は、単一OFDMスロット内で繰り返しニューラルネットワーク技術を採用し、レイテンシとメモリ制約を克服する。
提案したSisRafNetは、既存のディープラーニングに基づくチャネル推定手法と比較して優れた推定性能を提供する。
論文 参考訳(メタデータ) (2024-01-07T14:13:08Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Deep Learning Based Channel Estimation in High Mobility Communications
Using Bi-RNN Networks [7.310043452300738]
本稿では,2重選択チャネルを正確に推定する最適化された双方向リカレントニューラルネットワーク (Bi-RNN) を用いたチャネル推定手法を提案する。
開発されたBi-GRU推定器は、最近提案されたCNNベースの推定器を、異なる移動シナリオで大幅に上回っている。
論文 参考訳(メタデータ) (2023-04-29T09:20:28Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
我々は、ダウンリンクシナリオでチャネル推定を実現するために、一般的な残差畳み込みニューラルネットワークをデプロイする。
チャネル推定における他のディープラーニング手法と比較して,平均二乗誤差計算の改善が示唆された。
論文 参考訳(メタデータ) (2022-01-24T19:55:10Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
ディープニューラルネットワーク(DNN)は、レイリーフェディングチャネル上のエンドツーエンドデータ検出のための空間変調直交周波数分割多重化(SM-OFDM)技術と統合されている。
提案システムは受信したシンボルを直接復調し,チャネル推定を暗黙的に行う。
論文 参考訳(メタデータ) (2021-09-15T10:54:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning [51.72869237847767]
周波数分割二重化システムでは、ダウンリンクチャネル状態情報(CSI)取得方式は高いトレーニングとフィードバックのオーバーヘッドをもたらす。
これらのオーバーヘッドを削減するためにディープラーニングを用いたアップリンク支援ダウンリンクチャネル獲得フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-12T10:12:28Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。