論文の概要: An adaptive network-based approach for advanced forecasting of
cryptocurrency values
- arxiv url: http://arxiv.org/abs/2401.05441v2
- Date: Sun, 4 Feb 2024 04:18:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 03:18:39.274855
- Title: An adaptive network-based approach for advanced forecasting of
cryptocurrency values
- Title(参考訳): 暗号通貨価値の高度予測のための適応型ネットワークベースアプローチ
- Authors: Ali Mehrban, Pegah Ahadian
- Abstract要約: 本稿では,Adaptive Network Fuzzy Inference System (ANFIS) を用いて,今後7日間の暗号価格を予測するアーキテクチャについて述べる。
データを教えるために使われる方法は、グリッド分割、減算クラスタリング、ファジィC平均クラスタリング(FCM)アルゴリズムと同様に、ハイブリッドおよびバックプロパゲーションアルゴリズムである。
提案手法は,デジタル通貨の価格を短時間で予測できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes an architecture for predicting the price of
cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy
Inference System (ANFIS). Historical data of cryptocurrencies and indexes that
are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D),
and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach
the data are hybrid and backpropagation algorithms, as well as grid partition,
subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which
are used in data clustering. The architectural performance designed in this
paper has been compared with different inputs and neural network models in
terms of statistical evaluation criteria. Finally, the proposed method can
predict the price of digital currencies in a short time.
- Abstract(参考訳): 本稿では,Adaptive Network Based Fuzzy Inference System (ANFIS)を用いて,今後7日間の暗号価格を予測するアーキテクチャについて述べる。
ビットコイン(btc)、ethereum(eth)、bitcoin支配(btc.d)、ethereum支配(eth.d)である。
データを教えるために使われる手法は、グリッド分割、減算クラスタリング、およびデータクラスタリングに使用されるファジィC平均クラスタリング(FCM)アルゴリズムと同様に、ハイブリッドおよびバックプロパゲーションアルゴリズムである。
本論文で設計したアーキテクチャ性能は、統計的評価基準の観点から異なる入力モデルとニューラルネットワークモデルと比較されている。
最後に,提案手法は,デジタル通貨の価格を短時間で予測できる。
関連論文リスト
- GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
我々は,テキストS&textP 500,NASDAQ,DJI,NYSE,RASELの指標の傾向を予測するために,さまざまなデータソースに適用可能なグラフニューラルネットワークベースの畳み込みニューラルネットワーク(CNN)モデルを提案する。
実験の結果,F測度の観点からは,ベースラインアルゴリズム上のすべての指標の予測性能が約4%から15%に向上した。
論文 参考訳(メタデータ) (2024-07-04T09:14:24Z) - Enhancing Price Prediction in Cryptocurrency Using Transformer Neural
Network and Technical Indicators [0.5439020425819]
方法論は、技術指標、Performerニューラルネットワーク、BiLSTMの使用を統合する。
提案手法は、主要な暗号通貨の時間と日時に適用される。
論文 参考訳(メタデータ) (2024-03-06T10:53:12Z) - A Data-driven Deep Learning Approach for Bitcoin Price Forecasting [10.120972108960425]
本稿では,bitcoinの閉口価格を日単位の時間枠で予測するために,浅い双方向LSTM(Bidirectional-LSTM)モデルを提案する。
本稿では,他の予測手法と比較し,提案手法の助けを借りて,浅層ニューラルネットワークが他の一般的な価格予測モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-10-27T10:35:47Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal
Link Prediction in Cryptocurrency Transaction Networks [1.6801544027052142]
ネットワークのリンク予測学習構造は,ネットワークのメカニズムを理解する上で有用である。
本稿では,1つの潜在因子依存型,非負性,乗算型,グラフ正規化型更新(SLF-NMGRU)アルゴリズムを提案する。
実際の暗号通貨取引ネットワークの実験により,提案手法は精度と計算効率の両方を向上することを示した。
論文 参考訳(メタデータ) (2022-08-03T08:58:59Z) - CARD: Classification and Regression Diffusion Models [51.0421331214229]
本稿では,条件生成モデルと事前学習条件平均推定器を組み合わせた分類と回帰拡散(CARD)モデルを提案する。
おもちゃの例と実世界のデータセットを用いて条件分布予測におけるCARDの卓越した能力を示す。
論文 参考訳(メタデータ) (2022-06-15T03:30:38Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
クレダルネットワークは、確率質量関数の集合であるクレダルに基づく不正確な確率的グラフィカルモデルである。
CREMAと呼ばれるJavaライブラリが最近リリースされ、クレダルネットワークをモデル化し、処理し、クエリする。
我々は,これらのモデル上での推論タスクの正確な結果とともに,合成クレダルネットワークのオープンリポジトリであるcrrepoを提案する。
論文 参考訳(メタデータ) (2021-05-10T07:31:59Z) - On Technical Trading and Social Media Indicators in Cryptocurrencies'
Price Classification Through Deep Learning [7.7172142175424066]
本研究は、2017年1月から2021年1月までの1時間/日のデータを用いて、暗号通貨の価格変動の予測可能性を分析することを目的とする。
実験では,技術指標のみの制限モデルと,技術指標,トレーディング指標,ソーシャルメディア指標の非制限モデルを考慮して,技術指標,トレーディング指標,ソーシャルメディア指標の3つの機能を用いた。
この研究は、時間ごとの結果に基づいて、制限のないモデルが制限されたモデルを上回ることを示している。
論文 参考訳(メタデータ) (2021-02-13T13:18:36Z) - RethinkCWS: Is Chinese Word Segmentation a Solved Task? [81.11161697133095]
中国語の単語(CWS)システムの性能は、ディープニューラルネットワークの急速な発展とともに、徐々に高水準に達している。
本稿では、私たちが達成した事柄の株式を取得し、CWSタスクに残されている事柄を再考する。
論文 参考訳(メタデータ) (2020-11-13T11:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。