論文の概要: Population Graph Cross-Network Node Classification for Autism Detection
Across Sample Groups
- arxiv url: http://arxiv.org/abs/2401.05478v1
- Date: Wed, 10 Jan 2024 18:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 02:19:41.414342
- Title: Population Graph Cross-Network Node Classification for Autism Detection
Across Sample Groups
- Title(参考訳): サンプルグループ間の自閉症検出のための集団グラフクロスネットワークノード分類
- Authors: Anna Stephens, Francisco Santos, Pang-Ning Tan, Abdol-Hossein
Esfahanian
- Abstract要約: クロスネットワークノード分類は、ドメインドリフトを考慮に入れたGNN技術を拡張している。
我々は、クロスネットワークノード分類のための強力で斬新なアプローチOTGCNを提案する。
自閉症スペクトラム障害の分類におけるこのアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 10.699937593876669
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph neural networks (GNN) are a powerful tool for combining imaging and
non-imaging medical information for node classification tasks. Cross-network
node classification extends GNN techniques to account for domain drift,
allowing for node classification on an unlabeled target network. In this paper
we present OTGCN, a powerful, novel approach to cross-network node
classification. This approach leans on concepts from graph convolutional
networks to harness insights from graph data structures while simultaneously
applying strategies rooted in optimal transport to correct for the domain drift
that can occur between samples from different data collection sites. This
blended approach provides a practical solution for scenarios with many distinct
forms of data collected across different locations and equipment. We
demonstrate the effectiveness of this approach at classifying Autism Spectrum
Disorder subjects using a blend of imaging and non-imaging data.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ノード分類タスクのための画像と非画像医療情報を結合する強力なツールである。
クロスネットワークノード分類は、ドメインドリフトを考慮したgnn技術を拡張し、ラベルのないターゲットネットワーク上のノード分類を可能にする。
本稿では,ネットワーク間ノード分類のための強力な新しい手法OTGCNを提案する。
このアプローチは、グラフ畳み込みネットワークの概念に基づいて、グラフデータ構造からの洞察を活用すると同時に、異なるデータ収集サイトからのサンプル間で起こりうるドメインドリフトの修正に最適なトランスポートに根ざした戦略を適用する。
このブレンドアプローチは、さまざまな場所や機器にまたがって収集されるさまざまな形式のデータを持つシナリオに対して、実用的なソリューションを提供する。
本研究では、画像と非画像データを組み合わせた自閉症スペクトラム障害の分類におけるこのアプローチの有効性を示す。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
クロスネットワークノード分類(CNNC)は、豊富なラベルを持つソースネットワークから知識を転送することで、ラベル不足のターゲットネットワーク内のノードを分類することを目的としている。
本稿では,グラフニューラルネットワーク(GNN)と条件付き対向ドメイン適応を統合したドメイン適応型メッセージパッシンググラフニューラルネットワーク(DM-GNN)を提案する。
論文 参考訳(メタデータ) (2023-08-31T05:26:08Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
論文 参考訳(メタデータ) (2022-12-09T21:48:36Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
グラフニューラルネットワークは、ディープラーニングの成功の継続として出現している。
ヘテロジニアスアグリゲーションを組み合わせることで,GNN層間の情報伝達を促進することを提案する。
我々は,多くのグラフ分類ベンチマークにおいて,HAG-Netの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2021-02-08T08:57:56Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
グラフメタ学習フレームワーク - Graph Prototypeal Networks (GPN) を提案する。
GPNは、属性付きネットワーク上でテキストミータ学習を行い、ターゲット分類タスクを扱うための高度に一般化可能なモデルを導出する。
論文 参考訳(メタデータ) (2020-06-23T04:13:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。