Consensus Focus for Object Detection and minority classes
- URL: http://arxiv.org/abs/2401.05530v2
- Date: Fri, 31 May 2024 20:36:50 GMT
- Title: Consensus Focus for Object Detection and minority classes
- Authors: Erik Isai Valle Salgado, Chen Li, Yaqi Han, Linchao Shi, Xinghui Li,
- Abstract summary: We propose a modified consensus focus for semi-supervised and long-tailed object detection.
Our tests on synthetic driving datasets retrieved higher confidence and more accurate bounding boxes than the NMS, soft-NMS, and WBF.
- Score: 3.739946023378878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensemble methods exploit the availability of a given number of classifiers or detectors trained in single or multiple source domains and tasks to address machine learning problems such as domain adaptation or multi-source transfer learning. Existing research measures the domain distance between the sources and the target dataset, trains multiple networks on the same data with different samples per class, or combines predictions from models trained under varied hyperparameters and settings. Their solutions enhanced the performance on small or tail categories but hurt the rest. To this end, we propose a modified consensus focus for semi-supervised and long-tailed object detection. We introduce a voting system based on source confidence that spots the contribution of each model in a consensus, lets the user choose the relevance of each class in the target label space so that it relaxes minority bounding boxes suppression, and combines multiple models' results without discarding the poisonous networks. Our tests on synthetic driving datasets retrieved higher confidence and more accurate bounding boxes than the NMS, soft-NMS, and WBF. The code used to generate the results is available in our GitHub repository: http://github.com/ErikValle/Consensus-focus-for-object-detection.
Related papers
- Multimodal 3D Object Detection on Unseen Domains [37.142470149311904]
Domain adaptation approaches assume access to unannotated samples from the test distribution to address this problem.
We propose CLIX$text3D$, a multimodal fusion and supervised contrastive learning framework for 3D object detection.
We show that CLIX$text3D$ yields state-of-the-art domain generalization performance under multiple dataset shifts.
arXiv Detail & Related papers (2024-04-17T21:47:45Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy.
We consider a more practical scenario where the distributed client data is unlabeled, and a centralized labeled dataset is available on the server.
We propose an effective DualAdapt method to address the new challenges.
arXiv Detail & Related papers (2021-08-17T17:53:05Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
We propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN)
DMSN can simultaneously enhance domain innative and preserve discriminative power.
We develop a novel pseudo learning algorithm to approximate optimal parameters of pseudo target subset.
arXiv Detail & Related papers (2021-06-30T03:17:20Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Multi-Class Data Description for Out-of-distribution Detection [25.853322158250435]
Deep-MCDD is effective to detect out-of-distribution (OOD) samples as well as classify in-distribution (ID) samples.
By integrating the concept of Gaussian discriminant analysis into deep neural networks, we propose a deep learning objective to learn class-conditional distributions.
arXiv Detail & Related papers (2021-04-02T08:41:51Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.