Multi-Class Data Description for Out-of-distribution Detection
- URL: http://arxiv.org/abs/2104.00941v1
- Date: Fri, 2 Apr 2021 08:41:51 GMT
- Title: Multi-Class Data Description for Out-of-distribution Detection
- Authors: Dongha Lee, Sehun Yu, Hwanjo Yu
- Abstract summary: Deep-MCDD is effective to detect out-of-distribution (OOD) samples as well as classify in-distribution (ID) samples.
By integrating the concept of Gaussian discriminant analysis into deep neural networks, we propose a deep learning objective to learn class-conditional distributions.
- Score: 25.853322158250435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The capability of reliably detecting out-of-distribution samples is one of
the key factors in deploying a good classifier, as the test distribution always
does not match with the training distribution in most real-world applications.
In this work, we present a deep multi-class data description, termed as
Deep-MCDD, which is effective to detect out-of-distribution (OOD) samples as
well as classify in-distribution (ID) samples. Unlike the softmax classifier
that only focuses on the linear decision boundary partitioning its latent space
into multiple regions, our Deep-MCDD aims to find a spherical decision boundary
for each class which determines whether a test sample belongs to the class or
not. By integrating the concept of Gaussian discriminant analysis into deep
neural networks, we propose a deep learning objective to learn
class-conditional distributions that are explicitly modeled as separable
Gaussian distributions. Thereby, we can define the confidence score by the
distance of a test sample from each class-conditional distribution, and utilize
it for identifying OOD samples. Our empirical evaluation on multi-class tabular
and image datasets demonstrates that Deep-MCDD achieves the best performances
in distinguishing OOD samples while showing the classification accuracy as high
as the other competitors.
Related papers
- Distribution-Aware Robust Learning from Long-Tailed Data with Noisy Labels [8.14255560923536]
Real-world data often exhibit long-tailed distributions and label noise, significantly degrading generalization performance.
Recent studies have focused on noisy sample selection methods that estimate the centroid of each class based on high-confidence samples within each target class.
We present Distribution-aware Sample Selection and Contrastive Learning (DaSC) to generate enhanced class centroids.
arXiv Detail & Related papers (2024-07-23T19:06:15Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Toward a Realistic Benchmark for Out-of-Distribution Detection [3.8038269045375515]
We introduce a comprehensive benchmark for OOD detection based on ImageNet and Places365.
Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties.
arXiv Detail & Related papers (2024-04-16T11:29:43Z) - Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
Out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution.
We propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection.
Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods.
arXiv Detail & Related papers (2024-03-16T04:35:04Z) - Nearest Neighbor Guidance for Out-of-Distribution Detection [18.851275688720108]
We propose Nearest Neighbor Guidance (NNGuide) for detecting out-of-distribution (OOD) samples.
NNGuide reduces the overconfidence of OOD samples while preserving the fine-grained capability of the classifier-based score.
Our results demonstrate that NNGuide provides a significant performance improvement on the base detection scores.
arXiv Detail & Related papers (2023-09-26T12:40:35Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Explaining Cross-Domain Recognition with Interpretable Deep Classifier [100.63114424262234]
Interpretable Deep (IDC) learns the nearest source samples of a target sample as evidence upon which the classifier makes the decision.
Our IDC leads to a more explainable model with almost no accuracy degradation and effectively calibrates classification for optimum reject options.
arXiv Detail & Related papers (2022-11-15T15:58:56Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
arXiv Detail & Related papers (2021-12-13T02:35:15Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.