SENet: Visual Detection of Online Social Engineering Attack Campaigns
- URL: http://arxiv.org/abs/2401.05569v1
- Date: Wed, 10 Jan 2024 22:25:44 GMT
- Title: SENet: Visual Detection of Online Social Engineering Attack Campaigns
- Authors: Irfan Ozen, Karthika Subramani, Phani Vadrevu, Roberto Perdisci
- Abstract summary: Social engineering (SE) aims at deceiving users into performing actions that may compromise their security and privacy.
SEShield is a framework for in-browser detection of social engineering attacks.
- Score: 3.858859576352153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social engineering (SE) aims at deceiving users into performing actions that
may compromise their security and privacy. These threats exploit weaknesses in
human's decision making processes by using tactics such as pretext, baiting,
impersonation, etc. On the web, SE attacks include attack classes such as
scareware, tech support scams, survey scams, sweepstakes, etc., which can
result in sensitive data leaks, malware infections, and monetary loss. For
instance, US consumers lose billions of dollars annually due to various SE
attacks. Unfortunately, generic social engineering attacks remain understudied,
compared to other important threats, such as software vulnerabilities and
exploitation, network intrusions, malicious software, and phishing. The few
existing technical studies that focus on social engineering are limited in
scope and mostly focus on measurements rather than developing a generic
defense. To fill this gap, we present SEShield, a framework for in-browser
detection of social engineering attacks. SEShield consists of three main
components: (i) a custom security crawler, called SECrawler, that is dedicated
to scouting the web to collect examples of in-the-wild SE attacks; (ii) SENet,
a deep learning-based image classifier trained on data collected by SECrawler
that aims to detect the often glaring visual traits of SE attack pages; and
(iii) SEGuard, a proof-of-concept extension that embeds SENet into the web
browser and enables real-time SE attack detection. We perform an extensive
evaluation of our system and show that SENet is able to detect new instances of
SE attacks with a detection rate of up to 99.6% at 1% false positive, thus
providing an effective first defense against SE attacks on the web.
Related papers
- AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents [22.682464365220916]
AdvWeb is a novel black-box attack framework designed against web agents.
We train and optimize the adversarial prompter model using DPO.
Unlike prior approaches, our adversarial string injection maintains stealth and control.
arXiv Detail & Related papers (2024-10-22T20:18:26Z) - Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
Face Recognition Systems (FRS) have increasingly integrated into critical applications, including surveillance and user authentication.
Recent studies have revealed vulnerabilities in FRS to adversarial (e.g., adversarial patch attacks) and backdoor attacks (e.g., training data poisoning)
arXiv Detail & Related papers (2024-05-21T13:34:23Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Untargeted White-box Adversarial Attack with Heuristic Defence Methods
in Real-time Deep Learning based Network Intrusion Detection System [0.0]
In Adversarial Machine Learning (AML), malicious actors aim to fool the Machine Learning (ML) and Deep Learning (DL) models to produce incorrect predictions.
AML is an emerging research domain, and it has become a necessity for the in-depth study of adversarial attacks.
We implement four powerful adversarial attack techniques, namely, Fast Gradient Sign Method (FGSM), Jacobian Saliency Map Attack (JSMA), Projected Gradient Descent (PGD) and Carlini & Wagner (C&W) in NIDS.
arXiv Detail & Related papers (2023-10-05T06:32:56Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Efficient and Low Overhead Website Fingerprinting Attacks and Defenses
based on TCP/IP Traffic [16.6602652644935]
Website fingerprinting attacks based on machine learning and deep learning tend to use the most typical features to achieve a satisfactory performance of attacking rate.
To defend against such attacks, random packet defense (RPD) with a high cost of excessive network overhead is usually applied.
We propose a filter-assisted attack against RPD, which can filter out the injected noises using the statistical characteristics of TCP/IP traffic.
We further improve the list-based defense by a traffic splitting mechanism, which can combat the mentioned attacks as well as save a considerable amount of network overhead.
arXiv Detail & Related papers (2023-02-27T13:45:15Z) - Honeypot Implementation in a Cloud Environment [0.0]
This thesis presents a honeypot solution to investigate malicious activities in heiCLOUD.
To detect attackers in restricted network zones at Heidelberg University, a new concept to discover leaks in the firewall will be created.
A customized OpenSSH server that works as an intermediary instance will be presented.
arXiv Detail & Related papers (2023-01-02T15:02:54Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Arms Race in Adversarial Malware Detection: A Survey [33.8941961394801]
Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques.
ML is vulnerable to attacks known as adversarial examples.
Knowing the defender's feature set is critical to the success of transfer attacks.
The effectiveness of adversarial training depends on the defender's capability in identifying the most powerful attack.
arXiv Detail & Related papers (2020-05-24T07:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.