Frequency tuning of a squeezed vacuum state using interferometric
enhanced Bragg diffraction effect
- URL: http://arxiv.org/abs/2401.05619v1
- Date: Thu, 11 Jan 2024 01:53:52 GMT
- Title: Frequency tuning of a squeezed vacuum state using interferometric
enhanced Bragg diffraction effect
- Authors: Qiqi Deng, Wenqi Li, Xueshi Guo, Xiaoying Li
- Abstract summary: We experimentally demonstrate the optical frequency tuning of a squeezed vacuum state by using an acousto-optic modulator based bi-frequency interferometer.
The systematic efficiency of the frequency tuning device is $91%$, which is only confined by the optical transmission efficiency of the acousto-optic modulators.
- Score: 1.3831703318753605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We experimentally demonstrate the optical frequency tuning of a squeezed
vacuum state generated from an optical parametric oscillator by using an
acousto-optic modulator based bi-frequency interferometer. The systematic
efficiency of the frequency tuning device is $91\%$, which is only confined by
the optical transmission efficiency of the acousto-optic modulators. The amount
of frequency tuning is 80 MHz, which is orders of magnitude larger than the
line-width of the laser used to generate the squeezed state, and can in
principle be further extended to GHz range. Our investigation shows the
interferometric enhanced Bragg diffraction effect can be applied to a variety
of other quantum optical states as well, and will serve as a handy tool for
quantum network.
Related papers
- Squeezed dual-comb spectroscopy [32.73124984242397]
Squeezing the distribution of quantum noise to enhance measurement precision of either the amplitude or phase quadrature of an optical field leads to significant measurement improvements with continuous wave lasers.
Interferometry with a second coherent state frequency comb yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot noise limit.
The quantum noise reduction leads to a two-fold quantum speedup in the determination of gas concentration, with impact for fast, broadband, and high SNR ratio measurements of multiple species in dynamic chemical environments.
arXiv Detail & Related papers (2024-08-29T16:36:23Z) - Frequency-dependent squeezing for gravitational-wave detection through quantum teleportation [4.647804073850528]
Ground-based interferometric gravitational wave detectors are highly precise sensors for weak forces.
Current and future instruments address this limitation by injecting frequency-dependent squeezed vacuum into the detection port.
This study introduces a novel scheme employing the principles of quantum teleportation and entangled states of light.
arXiv Detail & Related papers (2024-01-09T00:26:25Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - An acousto-optic modulator based bi-frequency interferometer for quantum
technology [1.3831703318753605]
We demonstrate a high performance AOM based bi-frequency interferometer, which can realize either beating or beating free interference for single photon level quantum state.
We further demonstrate applications of the interferometer in quantum technology, including bi-frequency coherent combination, frequency tuning and optical switching.
arXiv Detail & Related papers (2022-10-02T01:59:46Z) - Quantum-enhanced absorption spectroscopy with bright squeezed frequency
combs [91.3755431537592]
We propose a strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state.
A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies.
We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor.
arXiv Detail & Related papers (2022-09-30T17:57:05Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Parametric Amplification of an Optomechanical Quantum Interconnect [0.0]
Connecting superconducting qubits to optical fiber necessitates the conversion of microwave photons to optical photons.
Modern experimental demonstrations exhibit strong coupling between a microwave resonator and an optical cavity mediated through phononic modes.
We propose a theoretical framework for time-dependent control of the driving lasers based on the input-output formalism of quantum optics.
arXiv Detail & Related papers (2022-02-24T18:48:58Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Frequency Multiplexed Optical Entangled Source based on the Pockels
Effect [0.0]
I study the generation of entangled optical frequency combs in mm-sized resonant electro-optic modulators.
These devices profit from the experimentally proven advantages such as nearly constant optical free spectral ranges over several gigahertz.
arXiv Detail & Related papers (2020-10-11T22:07:14Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.