The Missing U for Efficient Diffusion Models
- URL: http://arxiv.org/abs/2310.20092v4
- Date: Fri, 5 Apr 2024 14:35:26 GMT
- Title: The Missing U for Efficient Diffusion Models
- Authors: Sergio Calvo-Ordonez, Chun-Wun Cheng, Jiahao Huang, Lipei Zhang, Guang Yang, Carola-Bibiane Schonlieb, Angelica I Aviles-Rivero,
- Abstract summary: Diffusion Probabilistic Models yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design.
Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs.
We introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models.
- Score: 3.712196074875643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Probabilistic Models stand as a critical tool in generative modelling, enabling the generation of complex data distributions. This family of generative models yields record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs. In this paper, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with Denoising Diffusion Probabilistic Models (DDPMs), our framework operates with approximately a quarter of the parameters, and $\sim$ 30\% of the Floating Point Operations (FLOPs) compared to standard U-Nets in DDPMs. Furthermore, our model is notably faster in inference than the baseline when measured in fair and equal conditions. We also provide a mathematical intuition as to why our proposed reverse process is faster as well as a mathematical discussion of the empirical tradeoffs in the denoising downstream task. Finally, we argue that our method is compatible with existing performance enhancement techniques, enabling further improvements in efficiency, quality, and speed.
Related papers
- Comparison of Generative Learning Methods for Turbulence Modeling [1.2499537119440245]
High resolution techniques such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are generally not computationally affordable.
Recent advances in machine learning, specifically in generative probabilistic models, offer promising alternatives for turbulence modeling.
This paper investigates the application of three generative models - Variational Autoencoders (VAE), Deep Conversaal Generative Adversarial Networks (DCGAN), and Denoising Diffusion Probabilistic Models (DDPM)
arXiv Detail & Related papers (2024-11-25T14:20:53Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Adversarial Training of Denoising Diffusion Model Using Dual
Discriminators for High-Fidelity Multi-Speaker TTS [0.0]
The diffusion model is capable of generating high-quality data through a probabilistic approach.
It suffers from the drawback of slow generation speed due to the requirement of a large number of time steps.
We propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data.
arXiv Detail & Related papers (2023-08-03T07:22:04Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Variational Diffusion Models [33.0719137062396]
We introduce a family of diffusion-based generative models that obtain state-of-the-art likelihoods on image density estimation benchmarks.
We show that the variational lower bound (VLB) simplifies to a remarkably short expression in terms of the signal-to-noise ratio of the diffused data.
arXiv Detail & Related papers (2021-07-01T17:43:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.