PartSTAD: 2D-to-3D Part Segmentation Task Adaptation
- URL: http://arxiv.org/abs/2401.05906v3
- Date: Fri, 19 Jul 2024 08:19:36 GMT
- Title: PartSTAD: 2D-to-3D Part Segmentation Task Adaptation
- Authors: Hyunjin Kim, Minhyuk Sung,
- Abstract summary: We introduce PartSTAD, a method designed for the task adaptation of 2D-to-3D segmentation lifting.
Our experiments on the PartNet-Mobility dataset show significant improvements with our task adaptation approach.
- Score: 14.187127662385445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce PartSTAD, a method designed for the task adaptation of 2D-to-3D segmentation lifting. Recent studies have highlighted the advantages of utilizing 2D segmentation models to achieve high-quality 3D segmentation through few-shot adaptation. However, previous approaches have focused on adapting 2D segmentation models for domain shift to rendered images and synthetic text descriptions, rather than optimizing the model specifically for 3D segmentation. Our proposed task adaptation method finetunes a 2D bounding box prediction model with an objective function for 3D segmentation. We introduce weights for 2D bounding boxes for adaptive merging and learn the weights using a small additional neural network. Additionally, we incorporate SAM, a foreground segmentation model on a bounding box, to improve the boundaries of 2D segments and consequently those of 3D segmentation. Our experiments on the PartNet-Mobility dataset show significant improvements with our task adaptation approach, achieving a 7.0%p increase in mIoU and a 5.2%p improvement in mAP@50 for semantic and instance segmentation compared to the SotA few-shot 3D segmentation model.
Related papers
- Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation [19.2297264550686]
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods.
We introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities.
Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data.
arXiv Detail & Related papers (2024-08-16T07:52:00Z) - Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision [9.96433151449016]
This paper introduces a novel approach to 3D semantic segmentation, distinguished by incorporating a hybrid blend of 2D and 3D computer vision techniques.
We conduct 2D semantic segmentation on RGB images linked to 3D point clouds and extend the results to 3D using an extrusion technique for specific class labels.
This model serves as the current state-of-the-art 3D semantic segmentation model on the KITTI-360 dataset.
arXiv Detail & Related papers (2024-07-23T00:04:10Z) - Segment Any 3D Gaussians [85.93694310363325]
This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)
Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.
We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-01T17:15:24Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
Given a 3D object, kinematic motion prediction aims to identify the mobile parts as well as the corresponding motion parameters.
We propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters.
The network predictions yield a large scale of 3D objects with pseudo labeled mobility information.
arXiv Detail & Related papers (2023-03-31T02:37:36Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
Many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data.
We propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions.
We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance.
arXiv Detail & Related papers (2021-07-08T17:55:01Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
Multi-organ segmentation is one of most successful applications of deep learning in medical image analysis.
Deep convolutional neural nets (CNNs) have shown great promise in achieving clinically applicable image segmentation performance on CT or MRI images.
We propose a new framework for combining 3D and 2D models, in which the segmentation is realized through high-resolution 2D convolutions.
arXiv Detail & Related papers (2020-12-16T21:39:53Z) - 3D Guided Weakly Supervised Semantic Segmentation [27.269847900950943]
We propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information.
We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks.
arXiv Detail & Related papers (2020-12-01T03:34:15Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.