論文の概要: End-to-end Learnable Clustering for Intent Learning in Recommendation
- arxiv url: http://arxiv.org/abs/2401.05975v5
- Date: Sat, 09 Nov 2024 02:41:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:44.901448
- Title: End-to-end Learnable Clustering for Intent Learning in Recommendation
- Title(参考訳): レコメンデーションにおけるインテントラーニングのためのエンドツーエンド学習型クラスタリング
- Authors: Yue Liu, Shihao Zhu, Jun Xia, Yingwei Ma, Jian Ma, Xinwang Liu, Shengju Yu, Kejun Zhang, Wenliang Zhong,
- Abstract要約: 我々は、アンダーラインELCRecと呼ばれる新しい意図学習手法を提案する。
振る舞い表現学習をUnderlineEnd-to-end UnderlineLearnable UnderlineClusteringフレームワークに統合する。
1億3000万ページビューの産業レコメンデーションシステムに本手法をデプロイし,有望な結果を得る。
- 参考スコア(独自算出の注目度): 54.157784572994316
- License:
- Abstract: Intent learning, which aims to learn users' intents for user understanding and item recommendation, has become a hot research spot in recent years. However, existing methods suffer from complex and cumbersome alternating optimization, limiting performance and scalability. To this end, we propose a novel intent learning method termed \underline{ELCRec}, by unifying behavior representation learning into an \underline{E}nd-to-end \underline{L}earnable \underline{C}lustering framework, for effective and efficient \underline{Rec}ommendation. Concretely, we encode user behavior sequences and initialize the cluster centers (latent intents) as learnable neurons. Then, we design a novel learnable clustering module to separate different cluster centers, thus decoupling users' complex intents. Meanwhile, it guides the network to learn intents from behaviors by forcing behavior embeddings close to cluster centers. This allows simultaneous optimization of recommendation and clustering via mini-batch data. Moreover, we propose intent-assisted contrastive learning by using cluster centers as self-supervision signals, further enhancing mutual promotion. Both experimental results and theoretical analyses demonstrate the superiority of ELCRec from six perspectives. Compared to the runner-up, ELCRec improves NDCG@5 by 8.9\% and reduces computational costs by 22.5\% on the Beauty dataset. Furthermore, due to the scalability and universal applicability, we deploy this method on the industrial recommendation system with 130 million page views and achieve promising results. The codes are available on GitHub (https://github.com/yueliu1999/ELCRec). A collection (papers, codes, datasets) of deep group recommendation/intent learning methods is available on GitHub (https://github.com/yueliu1999/Awesome-Deep-Group-Recommendation).
- Abstract(参考訳): 近年,ユーザ理解とアイテムレコメンデーションの意図を学習するインテントラーニングがホットな研究スポットとなっている。
しかし、既存のメソッドは複雑で面倒な変更の最適化に悩まされ、パフォーマンスとスケーラビリティが制限されます。
そこで本研究では, 行動表現学習を, 効果的かつ効率的に行うために, 行動表現学習を 'underline{E}nd-to-end \underline{L}earnable \underline{C}lustering framework に統一することで, 意図学習法である \underline{ELCRec} を提案する。
具体的には,ユーザ行動シーケンスを符号化し,学習可能なニューロンとしてクラスタ中心(相対意図)を初期化する。
そして、異なるクラスタセンターを分離し、ユーザの複雑な意図を分離する、新たな学習可能なクラスタリングモジュールを設計する。
一方、ネットワークは、行動の埋め込みをクラスタセンターに近づけることによって、行動から意図を学ぶように誘導する。
これにより、ミニバッチデータによるレコメンデーションとクラスタリングの同時最適化が可能になる。
さらに,クラスタセンターを自己超越信号として利用し,相互促進の促進を図ることで,意図支援型コントラスト学習を提案する。
実験結果と理論的解析の両方が、6つの観点からELCRecの優位性を示している。
ランナーアップと比較して、ELCRecはNDCG@5を8.9\%改善し、Beautyデータセットの計算コストを22.5\%削減する。
さらに, 拡張性と汎用性のため, 1億3000万ページビューの産業レコメンデーションシステムに本手法をデプロイし, 有望な結果を得る。
コードはGitHubで入手できる(https://github.com/yueliu 1999/ELCRec)。
GitHub(https://github.com/yueliu1999/Awesome-Deep-Group-Recommendation)では、Deep Group Recommendation/intent Learningメソッドのコレクション(ペーパー、コード、データセット)が公開されている。
関連論文リスト
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
ディープグラフクラスタリング法 (Dink-Net) は, 拡張と縮小という概念を用いて提案される。
ノードを識別することにより、拡張によって劣化しても、表現は自己教師された方法で学習される。
クラスタリング分布は、提案したクラスタ拡張損失とクラスタ縮小損失を最小化することにより最適化される。
ランナアップと比較して、Dink-Net 9.62%は1100万ノードと16億エッジを持つogbn-papers100MデータセットでNMIの改善を実現している。
論文 参考訳(メタデータ) (2023-05-28T15:33:24Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
ユーザの意図を表現するために潜伏変数を導入し,クラスタリングにより潜伏変数の分布関数を学習する。
我々は,学習意図を対照的なSSLによってSRモデルに活用し,シーケンスのビューとそれに対応するインテントとの一致を最大化することを提案する。
4つの実世界のデータセットで実施された実験は、提案した学習パラダイムの優位性を示している。
論文 参考訳(メタデータ) (2022-02-05T09:24:13Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
本研究は,深層埋め込みから画像クラスタリングを行うための新しいフレームワークを提案する。
提案手法では,クラスタセンターの表現をエンドツーエンドで学習し,予測する。
我々のフレームワークは広く受け入れられているクラスタリング手法と同等に動作し、CIFAR-10データセット上で最先端のコントラスト学習手法より優れています。
論文 参考訳(メタデータ) (2021-09-26T22:18:15Z) - Meta-learning representations for clustering with infinite Gaussian
mixture models [39.56814839510978]
クラスタリング性能を向上させるためにニューラルネットワークを訓練するメタラーニング手法を提案する。
提案手法は,非ラベルデータとは異なるラベルデータを用いた知識メタ学習を用いて,未ラベルデータをクラスタ化することができる。
論文 参考訳(メタデータ) (2021-03-01T02:05:31Z) - Consensus Clustering With Unsupervised Representation Learning [4.164845768197489]
我々はBootstrap Your Own Latent(BYOL)のクラスタリング能力について検討し、BYOLを使って学習した機能がクラスタリングに最適でないことを観察する。
本稿では,新たなコンセンサスクラスタリングに基づく損失関数を提案するとともに,クラスタリング能力を改善し,類似のクラスタリングに基づく手法より優れたBYOLをエンド・ツー・エンドで学習する。
論文 参考訳(メタデータ) (2020-10-03T01:16:46Z) - Online Deep Clustering for Unsupervised Representation Learning [108.33534231219464]
オンラインディープクラスタリング(ODC)は、交互にではなく、クラスタリングとネットワーク更新を同時に実行する。
我々は,2つの動的メモリモジュール,すなわち,サンプルラベルと特徴を格納するサンプルメモリと,セントロイド進化のためのセントロイドメモリを設計,維持する。
このように、ラベルとネットワークは交互にではなく肩から肩へと進化する。
論文 参考訳(メタデータ) (2020-06-18T16:15:46Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z) - An Efficient Framework for Clustered Federated Learning [26.24231986590374]
本稿では,ユーザがクラスタに分散するフェデレーション学習(FL)の問題に対処する。
反復フェデレーションクラスタリングアルゴリズム(IFCA)を提案する。
ニューラルネットワークのような非分割問題では,アルゴリズムが効率的であることを示す。
論文 参考訳(メタデータ) (2020-06-07T08:48:59Z) - Improving k-Means Clustering Performance with Disentangled Internal
Representations [0.0]
本稿では,オートエンコーダの学習遅延符号表現の絡み合いを最適化する,シンプルなアプローチを提案する。
提案手法を用いて,MNISTデータセットでは96.2%,Fashion-MNISTデータセットでは85.6%,EMNIST Balancedデータセットでは79.2%,ベースラインモデルでは79.2%であった。
論文 参考訳(メタデータ) (2020-06-05T11:32:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。