論文の概要: LEGO:Language Enhanced Multi-modal Grounding Model
- arxiv url: http://arxiv.org/abs/2401.06071v1
- Date: Thu, 11 Jan 2024 17:41:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 13:33:08.085293
- Title: LEGO:Language Enhanced Multi-modal Grounding Model
- Title(参考訳): lego:言語拡張マルチモーダルグラウンドモデル
- Authors: Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiqing Cai, Qi Qi, Ran Zhou,
Junting Pan, Zefeng Li, Van Tu Vu, Zhida Huang, Tao Wang
- Abstract要約: 言語拡張型マルチモーダルグラウンドモデルであるLEGOを提案する。
提案モデルでは,入力中の局所情報の詳細な理解を求めるタスクを抽出する。
ビデオ内の画像や瞬間における特定の領域の正確な識別と位置決定を示す。
- 参考スコア(独自算出の注目度): 15.44099961048236
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multi-modal large language models have demonstrated impressive performance
across various tasks in different modalities. However, existing multi-modal
models primarily emphasize capturing global information within each modality
while neglecting the importance of perceiving local information across
modalities. Consequently, these models lack the ability to effectively
understand the fine-grained details of input data, limiting their performance
in tasks that require a more nuanced understanding. To address this limitation,
there is a compelling need to develop models that enable fine-grained
understanding across multiple modalities, thereby enhancing their applicability
to a wide range of tasks. In this paper, we propose LEGO, a language enhanced
multi-modal grounding model. Beyond capturing global information like other
multi-modal models, our proposed model excels at tasks demanding a detailed
understanding of local information within the input. It demonstrates precise
identification and localization of specific regions in images or moments in
videos. To achieve this objective, we design a diversified dataset construction
pipeline, resulting in a multi-modal, multi-granularity dataset for model
training. The code, dataset, and demo of our model can be found at https:
//github.com/lzw-lzw/LEGO.
- Abstract(参考訳): マルチモーダルな大規模言語モデルは、様々なタスクにおいて異なるモーダルで印象的なパフォーマンスを示している。
しかし、既存のマルチモーダルモデルは、各モーダル内でのグローバルな情報の収集に重点を置いている。
したがって、これらのモデルは入力データの詳細な詳細を効果的に理解する能力がなく、より微妙な理解を必要とするタスクのパフォーマンスを制限している。
この制限に対処するためには、複数のモダリティをまたいできめ細かな理解を可能にし、幅広いタスクに適用性を高めるモデルを開発する必要がある。
本稿では,言語拡張型マルチモーダルグラウンドモデルであるLEGOを提案する。
他のマルチモーダルモデルのようなグローバルな情報をキャプチャする以外に、提案モデルでは、入力内のローカル情報の詳細な理解を要求するタスクに優れています。
ビデオ内の画像や瞬間における特定の領域の正確な識別と位置決定を示す。
この目的を達成するために,多様なデータセット構築パイプラインを設計し,モデルトレーニングのためのマルチモーダル・マルチグラニュラ性データセットを作成する。
私たちのモデルのコード、データセット、デモは、https: //github.com/lzw-lzw/LEGOにある。
関連論文リスト
- GenRL: Multimodal-foundation world models for generalization in embodied agents [12.263162194821787]
強化学習(RL)は、タスクごとに複雑な報酬設計を必要とするため、スケールアップが難しい。
現在の基盤視覚言語モデル(VLM)は、微調整やその他の適応を具体的文脈で適用する必要がある。
このような領域におけるマルチモーダルデータの欠如は、具体化されたアプリケーションの基盤モデルを開発する上での障害である。
論文 参考訳(メタデータ) (2024-06-26T03:41:48Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
マルチモーダル大言語モデルのどの層がグローバルな画像情報に最も力を注いでいるかを検討する。
本研究では,モデルの中間層が,よりグローバルな意味情報を符号化できることを見出した。
最上位のレイヤが過度にローカル情報に集中していることが分かり、グローバル情報をエンコードする能力の低下につながります。
論文 参考訳(メタデータ) (2024-02-27T08:27:15Z) - AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling [115.89786751297348]
我々は,様々なモーダルの統一処理に離散表現を利用する,任意のマルチモーダル言語モデルであるAnyGPTを紹介する。
我々は、マルチモーダルテキスト中心のデータセットを構築し、マルチモーダルアライメント事前学習を行う。
我々は,AnyGPTが任意のマルチモーダル対話を円滑に行うと同時に,すべてのモダリティにまたがる特化モデルに匹敵する性能を実現することができることを示す。
論文 参考訳(メタデータ) (2024-02-19T15:33:10Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffinフレームワークは、事前訓練された視覚言語モデルを使用して視覚信号のプロバイダとして機能する。
UniMM-Chatデータセットはデータセットの相補性を探求し、高品質で多様なマルチモーダル命令を生成する。
論文 参考訳(メタデータ) (2023-10-01T12:35:18Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
マルチターンインターリーブ型インストラクションフォロー機能を備えた,より大規模な言語モデルを実現するための,ほとんどアノテーションのないフレームワークであるTextBindを紹介する。
提案手法では,画像キャプチャペアのみが必要であり,言語モデルからマルチターンマルチモーダル・インストラクション・レスポンス・会話を生成する。
そこで我々は,画像エンコーダとデコーダモデルをシームレスに統合する言語モデル中心アーキテクチャであるMIMを考案した。
論文 参考訳(メタデータ) (2023-09-14T15:34:01Z) - UnIVAL: Unified Model for Image, Video, Audio and Language Tasks [105.77733287326308]
UnIVALモデルは2つのモードを超えて、テキスト、画像、ビデオ、オーディオを1つのモデルに統合する。
本モデルは,タスクバランスとマルチモーダルカリキュラム学習に基づいて,多くのタスクに対して効率的に事前学習を行う。
統一モデルにより、重み一般化によるマルチモーダルモデルの融合に関する新しい研究を提案する。
論文 参考訳(メタデータ) (2023-07-30T09:48:36Z) - TextMI: Textualize Multimodal Information for Integrating Non-verbal
Cues in Pre-trained Language Models [5.668457303716451]
マルチモーダルな行動分析タスクのための汎用的,競争的なベースラインとして,TextMIを提案する。
我々のアプローチは、モデルの複雑さを著しく減らし、モデルの判断に解釈可能性を追加し、様々なタスクに適用できます。
論文 参考訳(メタデータ) (2023-03-27T17:54:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。