Theory of nonlinear sub-Doppler laser spectroscopy taking into account
atomic-motion-induced density-dependent effects in a gas
- URL: http://arxiv.org/abs/2401.06123v1
- Date: Tue, 21 Nov 2023 14:18:48 GMT
- Title: Theory of nonlinear sub-Doppler laser spectroscopy taking into account
atomic-motion-induced density-dependent effects in a gas
- Authors: V. I. Yudin, A. V. Taichenachev, M. Yu. Basalaev, O. N. Prudnikov, V.
G. Pal'chikov, T. Zanon-Willette, S. N. Bagayev
- Abstract summary: We develop a self-consistent solution of the Maxwell-Bloch equations in the mean field and single-atom density matrix approximations.
This makes it possible to correctly take into account the effects caused by the free motion of atoms in a gas.
Within the framework of this approach, analytical expressions for the light field were obtained for an arbitrary number of resonant waves and arbitrary optical thickness of a gas medium.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a field-nonlinear theory of sub-Doppler spectroscopy in a gas of
two-level atoms, based on a self-consistent solution of the Maxwell-Bloch
equations in the mean field and single-atom density matrix approximations. This
makes it possible to correctly take into account the effects caused by the free
motion of atoms in a gas, which lead to a nonlinear dependence of the
spectroscopic signal on the atomic density even in the absent of a direct
interatomic interaction (e.g., dipole-dipole interaction). Within the framework
of this approach, analytical expressions for the light field were obtained for
an arbitrary number of resonant waves and arbitrary optical thickness of a gas
medium. Sub-Doppler spectroscopy in the transmission signal for two
counterpropagating and co-propagating waves has been studied in detail. A
previously unknown red shift of a narrow sub-Doppler resonance is predicted in
a counterpropagating waves scheme, when the frequency of one wave is fixed and
the frequency of the other wave is varied. The magnitude of this shift depends
on the atomic density and can be more than an order of magnitude greater than
the known shift from the interatomic dipole-dipole interaction (Lorentz-Lorenz
shift). The found effects, caused by the free motion of atoms, require a
significant revision of the existing picture of spectroscopic effects depending
on the density of atoms in a gas. Apart of fundamental aspect, obtained results
are important for precision laser spectroscopy and optical atomic clocks.
Related papers
- Direct experimental observation of sub-poissonian photon statistics by means of multi-photon scattering on a two-level system [0.0]
A cascade of two-level superconducting artificial atoms -- a source and a probe -- strongly coupled to a semi-infinite waveguide is a promising tool for observing nontrivial phenomena in quantum nonlinear optics.
We experimentally demonstrate wave mixing between nonclassical light from the coherently cw-pumped source and another coherent wave acting on the probe.
arXiv Detail & Related papers (2024-09-17T08:15:48Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Single Photon Scattering Can Account for the Discrepancies Between
Entangled Two-Photon Measurement Techniques [0.0]
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption.
Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section.
A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state.
arXiv Detail & Related papers (2022-02-23T20:14:11Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Proton-electron mass ratio by high-resolution optical spectroscopy of
ion ensembles in the resolved-carrier regime [0.0]
One-photon optical spectroscopy free of Doppler and transit broadening can be obtained with more easily prepared ensembles of ions.
We show that one-photon optical spectroscopy free of Doppler and transit broadening can also be obtained with more easily prepared ensembles of ions.
arXiv Detail & Related papers (2021-03-22T11:42:14Z) - Tailored optical properties of atomic medium by a narrow bandwidth
frequency comb [0.3058685580689604]
The quantum interference assisted enhanced optical activity due to the emergence of a steady-state atomic polarization is investigated.
The Rubidium atoms in an antirelaxation coated cell provide a suitable platform to address the phenomena at multiple Larmors frequencies.
arXiv Detail & Related papers (2021-03-16T05:42:53Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Surface-plasmon based dispersive detection and spectroscopy of ultracold
atoms [0.0]
We report on the optical detection and spectroscopy of ultracold atoms near a gold surface.
A probe light field is used to excite surface plasmon polaritons.
The refractive index of the atomic gas shifts the plasmon resonance and changes the reflected light power.
arXiv Detail & Related papers (2020-09-08T09:45:41Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.